The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A317996 Expansion of e.g.f. exp((1 - exp(-3*x))/3). 10
 1, 1, -2, 1, 19, -128, 379, 1549, -32600, 261631, -845909, -10713602, 237695149, -2513395259, 11792378662, 151915180429, -4826456213273, 70741388773960, -558513179369297, -2833805536521839, 200720356696607416, -4256279445015662093, 54120395442382043743, -173423789950999240226 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..495 Eric Weisstein's World of Mathematics, Bell Polynomial FORMULA a(n) = Sum_{k=0..n} (-3)^(n-k)*Stirling2(n,k). a(0) = 1; a(n) = Sum_{k=1..n} (-3)^(k-1)*binomial(n-1,k-1)*a(n-k). a(n) = (-3)^n BellPolynomial_n(-1/3). - Peter Luschny, Aug 20 2018 MAPLE a:=series(exp((1 - exp(-3*x))/3), x=0, 24): seq(n!*coeff(a, x, n), n=0..23); # Paolo P. Lava, Mar 26 2019 MATHEMATICA nmax = 23; CoefficientList[Series[Exp[(1 - Exp[-3 x])/3], {x, 0, nmax}], x] Range[0, nmax]! Table[Sum[(-3)^(n - k) StirlingS2[n, k], {k, 0, n}], {n, 0, 23}] a[n_] := a[n] = Sum[(-3)^(k - 1) Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}] Table[(-3)^n BellB[n, -1/3], {n, 0, 23}] (* Peter Luschny, Aug 20 2018 *) CROSSREFS Column k=3 of A309386. Cf. A004212, A007559, A009235, A014182, A318179, A318180, A318181. Sequence in context: A012901 A013021 A012907 * A066753 A103244 A328921 Adjacent sequences: A317993 A317994 A317995 * A317997 A317998 A317999 KEYWORD sign AUTHOR Ilya Gutkovskiy, Aug 20 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 08:36 EST 2022. Contains 358438 sequences. (Running on oeis4.)