login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274517
Number T(n,k) of integer partitions of n with exactly k distinct primes.
2
1, 1, 1, 1, 1, 2, 2, 3, 2, 4, 1, 3, 7, 1, 3, 9, 3, 5, 12, 5, 6, 15, 9, 8, 22, 11, 1, 8, 28, 19, 1, 12, 38, 24, 3, 13, 46, 38, 4, 17, 62, 48, 8, 19, 77, 68, 12, 26, 98, 87, 20, 28, 117, 127, 24, 1, 37, 152, 154, 41, 1, 40, 183, 210, 55, 2, 52, 230, 260, 82, 3
OFFSET
0,6
COMMENTS
Row lengths increase by 1 at row A007504(n).
Columns k=0-1 give: A002095, A132381.
Row sums give: A000041.
LINKS
FORMULA
G.f.: Product_{k>=1} (1 - x^prime(k))/(1 - x^k)*(y/(1-x^prime(k)) - y + 1).
EXAMPLE
T(6,1) = 7 because we have: 5+1, 4+2, 3+3, 3+1+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1+1.
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 2;
2, 3;
2, 4, 1;
3, 7, 1;
3, 9, 3;
5, 12, 5;
6, 15, 9;
8, 22, 11, 1;
...
MAPLE
b:= proc(n, i) option remember; expand(
`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*
`if`(j>0 and isprime(i), x, 1), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
seq(T(n), n=0..30); # Alois P. Heinz, Jun 26 2016
MATHEMATICA
nn = 20; Map[Select[#, # > 0 &] &, CoefficientList[Series[Product[
1/(1 - z^k), {k, Select[Range[1000], PrimeQ[#] == False &]}] Product[
u/(1 - z^j) - u + 1, {j, Table[Prime[n], {n, 1, nn}]}], {z, 0,
nn}], {z, u}]] // Grid
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Jun 25 2016
STATUS
approved