login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355583
a(n) is the number of the 5-smooth divisors of n.
8
1, 2, 2, 3, 2, 4, 1, 4, 3, 4, 1, 6, 1, 2, 4, 5, 1, 6, 1, 6, 2, 2, 1, 8, 3, 2, 4, 3, 1, 8, 1, 6, 2, 2, 2, 9, 1, 2, 2, 8, 1, 4, 1, 3, 6, 2, 1, 10, 1, 6, 2, 3, 1, 8, 2, 4, 2, 2, 1, 12, 1, 2, 3, 7, 2, 4, 1, 3, 2, 4, 1, 12, 1, 2, 6, 3, 1, 4, 1, 10, 5, 2, 1, 6, 2, 2
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = e+1 if p <= 5 and 1 otherwise.
a(n) = (A007814(n) + 1)*(A007949(n) + 1)*(A112765(n) + 1).
a(n) = A000005(A355582(n)).
a(n) <= A000005(n), with equality if and only if n is in A051037.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 15/4.
Dirichlet g.f.: zeta(s)/((1-1/2^s)*(1-1/3^s)*(1-1/5^s)). - Amiram Eldar, Dec 25 2022
MATHEMATICA
a[n_] := Times @@ (1 + IntegerExponent[n, {2, 3, 5}]); Array[a, 100]
PROG
(PARI) a(n) = (valuation(n, 2) + 1) * (valuation(n, 3) + 1) * (valuation(n, 5) + 1);
(Python)
from sympy import multiplicity as v
def a(n): return (v(2, n)+1)*(v(3, n)+1)*(v(5, n)+1)
print([a(n) for n in range(1, 87)]) # Michael S. Branicky, Jul 08 2022
KEYWORD
nonn,mult,easy
AUTHOR
Amiram Eldar, Jul 08 2022
STATUS
approved