OFFSET
1,2
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..19683
FORMULA
1/Product_{k>0} (1 - x^k + x^(2*k))^a(k) is g.f. for A000041(). - Vladeta Jovovic, Jun 07 2004
From Christian G. Bower, May 20 2005: (Start)
Multiplicative with a(2^e) = a(3^e) = e+1, a(p^e) = 1, p>3.
Dirichlet g.f.: 1/((1-1/2^s)*(1-1/3^s))^2 * Product{p prime > 3}(1/(1-1/p^s)). [corrected by Vaclav Kotesovec, Nov 20 2021] (End)
a(n) = Sum_{d divides n} mu(6d)*tau(n/d). - Benoit Cloitre, Jun 21 2007
Dirichlet g.f.: zeta(s)/((1-1/2^s)*(1-1/3^s)). - Ralf Stephan, Mar 24 2015; corrected by Vaclav Kotesovec, Nov 20 2021
Sum_{k=1..n} a(k) ~ 3*n. - Vaclav Kotesovec, Nov 20 2021
MATHEMATICA
a[n_] := DivisorSum[n, MoebiusMu[6*#]*DivisorSigma[0, n/#] &]; Array[a, 100] (* or *) a[n_] := ((1+IntegerExponent[n, 2])*(1+IntegerExponent[n, 3])); Array[a, 100] (* Amiram Eldar, Dec 03 2018 from the pari codes *)
PROG
(PARI) a(n)=sumdiv(n, d, moebius(6*d)*numdiv(n/d)) \\ Benoit Cloitre, Jun 21 2007
(PARI) A072078(n) = ((1+valuation(n, 2))*(1+valuation(n, 3))); \\ Antti Karttunen, Dec 03 2018
(Magma) [(Valuation(n, 2)+1)*(Valuation(n, 3)+1): n in [1..120]]; // Vincenzo Librandi, Mar 24 2015
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Reinhard Zumkeller, Jun 13 2002
EXTENSIONS
More terms from Benoit Cloitre, Jun 21 2007
STATUS
approved