login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072078
Number of 3-smooth divisors of n.
10
1, 2, 2, 3, 1, 4, 1, 4, 3, 2, 1, 6, 1, 2, 2, 5, 1, 6, 1, 3, 2, 2, 1, 8, 1, 2, 4, 3, 1, 4, 1, 6, 2, 2, 1, 9, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 10, 1, 2, 2, 3, 1, 8, 1, 4, 2, 2, 1, 6, 1, 2, 3, 7, 1, 4, 1, 3, 2, 2, 1, 12, 1, 2, 2, 3, 1, 4, 1, 5, 5, 2, 1, 6, 1, 2, 2, 4, 1, 6, 1, 3, 2, 2, 1
OFFSET
1,2
LINKS
FORMULA
a(n) = A000005(A065331(n)).
a(n) = (A007814(n) + 1)*(A007949(n) + 1).
1/Product_{k>0} (1 - x^k + x^(2*k))^a(k) is g.f. for A000041(). - Vladeta Jovovic, Jun 07 2004
From Christian G. Bower, May 20 2005: (Start)
Multiplicative with a(2^e) = a(3^e) = e+1, a(p^e) = 1, p>3.
Dirichlet g.f.: 1/((1-1/2^s)*(1-1/3^s))^2 * Product{p prime > 3}(1/(1-1/p^s)). [corrected by Vaclav Kotesovec, Nov 20 2021] (End)
a(n) = Sum_{d divides n} mu(6d)*tau(n/d). - Benoit Cloitre, Jun 21 2007
Dirichlet g.f.: zeta(s)/((1-1/2^s)*(1-1/3^s)). - Ralf Stephan, Mar 24 2015; corrected by Vaclav Kotesovec, Nov 20 2021
Sum_{k=1..n} a(k) ~ 3*n. - Vaclav Kotesovec, Nov 20 2021
MATHEMATICA
a[n_] := DivisorSum[n, MoebiusMu[6*#]*DivisorSigma[0, n/#] &]; Array[a, 100] (* or *) a[n_] := ((1+IntegerExponent[n, 2])*(1+IntegerExponent[n, 3])); Array[a, 100] (* Amiram Eldar, Dec 03 2018 from the pari codes *)
PROG
(PARI) a(n)=sumdiv(n, d, moebius(6*d)*numdiv(n/d)) \\ Benoit Cloitre, Jun 21 2007
(PARI) A072078(n) = ((1+valuation(n, 2))*(1+valuation(n, 3))); \\ Antti Karttunen, Dec 03 2018
(Magma) [(Valuation(n, 2)+1)*(Valuation(n, 3)+1): n in [1..120]]; // Vincenzo Librandi, Mar 24 2015
KEYWORD
nonn,mult
AUTHOR
Reinhard Zumkeller, Jun 13 2002
EXTENSIONS
More terms from Benoit Cloitre, Jun 21 2007
STATUS
approved