OFFSET
1,2
COMMENTS
If k is a term, then 10 * k is a term. There are an infinite number of terms that are not divisible by 10. The numbers m = 24 * 10^(42 * k - 40) +1, k >= 1, are divisible by 7^2 = digsum(m)^2. Also, the numbers s = 491 * 10^(42 * k - 8) + 3, k >= 1, are divisible by 17^2 = digsum(s)^2. - Marius A. Burtea, Mar 19 2020
The numbers 2^A095412(n), n >= 5, are terms. - Marius A. Burtea, Apr 02 2020
LINKS
Donovan Johnson, Table of n, a(n) for n = 1..1000
EXAMPLE
k=9477, sumdigits(9477)=27, q=9477=27*27*13.
MATHEMATICA
sud[x_] := Apply[Plus, IntegerDigits[x]] Do[s=sud[n]^2; If[IntegerQ[n/s], Print[n]], {n, 1, 10000}]
Select[Range[3000], Divisible[#, Total[IntegerDigits[#]]^2]&] (* Harvey P. Dale, May 04 2011 *)
PROG
(PARI) for(n=1, 10^4, s=sumdigits(n); if(!(n%s^2), print1(n, ", "))) \\ Derek Orr, Apr 29 2015
(Magma) [k:k in [1..3000]| k mod &+Intseq(k)^2 eq 0]; // Marius A. Burtea, Mar 19 2020
(Python)
def ok(n): return n and n%sum(di for di in map(int, str(n)))**2 == 0
print([k for k in range(3000) if ok(k)]) # Michael S. Branicky, Jan 10 2025
CROSSREFS
KEYWORD
base,nonn,easy,changed
AUTHOR
Labos Elemer, Jun 14 2002
STATUS
approved