login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A072081
Numbers divisible by the square of the sum of their digits in base 10.
10
1, 10, 20, 50, 81, 100, 112, 162, 200, 243, 324, 392, 400, 405, 500, 512, 605, 648, 810, 972, 1000, 1053, 1100, 1120, 1134, 1183, 1215, 1296, 1400, 1620, 1701, 1900, 1944, 2000, 2025, 2106, 2156, 2240, 2268, 2300, 2401, 2430, 2511, 2592, 2704, 2800, 2916
OFFSET
1,2
COMMENTS
If k is a term, then 10 * k is a term. There are an infinite number of terms that are not divisible by 10. The numbers m = 24 * 10^(42 * k - 40) +1, k >= 1, are divisible by 7^2 = digsum(m)^2. Also, the numbers s = 491 * 10^(42 * k - 8) + 3, k >= 1, are divisible by 17^2 = digsum(s)^2. - Marius A. Burtea, Mar 19 2020
The numbers 2^A095412(n), n >= 5, are terms. - Marius A. Burtea, Apr 02 2020
LINKS
EXAMPLE
k=9477, sumdigits(9477)=27, q=9477=27*27*13.
MATHEMATICA
sud[x_] := Apply[Plus, IntegerDigits[x]] Do[s=sud[n]^2; If[IntegerQ[n/s], Print[n]], {n, 1, 10000}]
Select[Range[3000], Divisible[#, Total[IntegerDigits[#]]^2]&] (* Harvey P. Dale, May 04 2011 *)
PROG
(PARI) for(n=1, 10^4, s=sumdigits(n); if(!(n%s^2), print1(n, ", "))) \\ Derek Orr, Apr 29 2015
(Magma) [k:k in [1..3000]| k mod &+Intseq(k)^2 eq 0]; // Marius A. Burtea, Mar 19 2020
(Python)
def ok(n): return n and n%sum(di for di in map(int, str(n)))**2 == 0
print([k for k in range(3000) if ok(k)]) # Michael S. Branicky, Jan 10 2025
CROSSREFS
KEYWORD
base,nonn,easy,changed
AUTHOR
Labos Elemer, Jun 14 2002
STATUS
approved