login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A034087
Numbers divisible by the sum of the squares of their digits.
12
1, 10, 20, 50, 100, 110, 111, 120, 130, 133, 200, 210, 240, 267, 298, 310, 315, 360, 372, 376, 400, 420, 480, 500, 532, 550, 630, 803, 917, 973, 1000, 1010, 1011, 1020, 1030, 1071, 1100, 1101, 1110, 1134, 1148, 1200, 1211, 1222, 1290, 1300, 1302, 1316
OFFSET
1,2
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..3465 from Carmine Suriano)
FORMULA
A003132[a(n)] | a(n). - R. J. Mathar, Feb 25 2007
EXAMPLE
a(100) = 4131 since 4^2+1^2+3^2+1^2=27 divides 4131. - Carmine Suriano, May 04 2013
MAPLE
isA034087 := proc(n) if n mod A003132(n) = 0 then true ; else false ; end if ; end proc:
for n from 1 to 1800 do if isA034087(n) then printf("%d ", n) ; end if ; end do ; # R. J. Mathar, Feb 25 2007
MATHEMATICA
Select[Range[1500], Divisible[#, Plus @@ (IntegerDigits[#]^2)] &] (* Amiram Eldar, Jan 31 2021 *)
PROG
(PARI) isok(m) = !(m % norml2(digits(m))); \\ Michel Marcus, Jan 31 2021
(Python)
def ok(n): return n and n%sum(di**2 for di in map(int, str(n))) == 0
print([k for k in range(1317) if ok(k)]) # Michael S. Branicky, Jan 10 2025
CROSSREFS
KEYWORD
base,easy,nonn
STATUS
approved