OFFSET
1,2
COMMENTS
If k is a term, then 10*k is a term. There are an infinite number of terms that are not divisible by 10. The numbers m = 24 * 10^(294*k - 292) + 1, k = 7*a - 6, a >= 1, are divisible by 7^4 = digsum(m)^4. Also, the numbers s = 491 * 10^(4624*k - 4623) + 3, k = 17*u - 11, u >= 1, are divisible by 17^4 = digsum(s)^4. - Marius A. Burtea, Mar 19 2020
The numbers 2^A095412(n), n >= 6, are terms. - Marius A. Burtea, Apr 02 2020
LINKS
Donovan Johnson, Table of n, a(n) for n = 1..1000
EXAMPLE
k=614656: sumdigits(614656)=28, q=1, since k=28*28*28*28.
MATHEMATICA
sud[x_] := Apply[Plus, IntegerDigits[x]] Do[s=sud[n]^4; If[IntegerQ[n/s], Print[n]], {n, 1, 10000}]
Select[Range[700000], Divisible[#, Total[IntegerDigits[ #]]^4]&] (* Harvey P. Dale, Jun 28 2011 *)
PROG
(Magma) [k:k in [1..640000]| k mod &+Intseq(k)^4 eq 0]; // Marius A. Burtea, Mar 19 2020
(PARI) isok(m) = (m % sumdigits(m)^4) == 0; \\ Michel Marcus, Apr 02 2020
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Labos Elemer, Jun 14 2002
STATUS
approved