login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072083
Numbers divisible by the 4th power of the sum of their digits in base 10.
3
1, 10, 100, 1000, 2000, 2401, 5000, 10000, 13122, 20000, 24010, 50000, 100000, 110000, 131220, 140000, 190000, 200000, 230000, 234256, 240100, 280000, 320000, 370000, 390625, 400221, 410000, 460000, 500000, 512000, 550000, 614656, 640000
OFFSET
1,2
COMMENTS
If k is a term, then 10*k is a term. There are an infinite number of terms that are not divisible by 10. The numbers m = 24 * 10^(294*k - 292) + 1, k = 7*a - 6, a >= 1, are divisible by 7^4 = digsum(m)^4. Also, the numbers s = 491 * 10^(4624*k - 4623) + 3, k = 17*u - 11, u >= 1, are divisible by 17^4 = digsum(s)^4. - Marius A. Burtea, Mar 19 2020
The numbers 2^A095412(n), n >= 6, are terms. - Marius A. Burtea, Apr 02 2020
LINKS
EXAMPLE
k=614656: sumdigits(614656)=28, q=1, since k=28*28*28*28.
MATHEMATICA
sud[x_] := Apply[Plus, IntegerDigits[x]] Do[s=sud[n]^4; If[IntegerQ[n/s], Print[n]], {n, 1, 10000}]
Select[Range[700000], Divisible[#, Total[IntegerDigits[ #]]^4]&] (* Harvey P. Dale, Jun 28 2011 *)
PROG
(Magma) [k:k in [1..640000]| k mod &+Intseq(k)^4 eq 0]; // Marius A. Burtea, Mar 19 2020
(PARI) isok(m) = (m % sumdigits(m)^4) == 0; \\ Michel Marcus, Apr 02 2020
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Labos Elemer, Jun 14 2002
STATUS
approved