login
A379980
Numbers that are divisible by the square of the sum of the squares of their digits.
3
1, 10, 100, 1000, 1100, 1200, 1300, 2000, 2023, 2100, 2400, 3100, 4332, 5000, 10000, 10100, 10200, 10300, 11000, 12000, 13000, 20000, 20100, 20230, 20400, 21000, 24000, 30100, 30324, 31000, 31311, 42000, 43011, 43320, 50000, 52022, 52215, 55000, 71824, 100000
OFFSET
1,2
COMMENTS
Called "Second-order Harshad numbers" by Pal and Gopalan (2023).
If k is a term, then 10*k is also a term.
LINKS
Pradip Kumar Pal and Kaushik Gopalan, Second Order Harshad Number, International Journal of Mathematical Education, Vol. 13, No. 1 (2023), pp. 25-26.
EXAMPLE
10 is a term since 10 is divisible by (1^2 + 0^2)^2 = 1.
1100 is a term since 1100 is divisible by (1^2 + 1^2 + 0^2 + 0^2)^2 = 4.
MATHEMATICA
Select[Range[10^5], Divisible[#, (Plus @@ (IntegerDigits[#]^2))^2] &]
PROG
(PARI) isok(k) = !(k % vecsum(apply(x -> x^2, digits(k)))^2);
(Python)
def ok(n): return n and n%sum(di**2 for di in map(int, str(n)))**2 == 0
print([k for k in range(100001) if ok(k)]) # Michael S. Branicky, Jan 10 2025
CROSSREFS
Cf. A003132, A005349, A072081, A180490 (binary analog).
Subsequence of A034087.
Subsequences: A379981, A379982.
Sequence in context: A077439 A136839 A136863 * A031201 A228989 A072083
KEYWORD
nonn,base,easy
AUTHOR
Amiram Eldar, Jan 07 2025
STATUS
approved