OFFSET
1,2
COMMENTS
LINKS
Jianing Song, Table of n, a(n) for n = 1..307 (corresponding to A355812(n) <= 1500)
EXAMPLE
a(3) = 5 since A355812(3) = 56, and there are 5 such pairs (m,k), 1 <= m < k <= 56:
(m,k) = (7,35): 1/5^2 - 1/7^2 = 1/7^2 - 1/35^2;
(m,k) = (11,55): 1/10^2 - 1/22^2 = 1/11^2 - 1/55^2;
(m,k) = (22,55): 1/10^2 - 1/11^2 = 1/22^2 - 1/55^2;
(m,k) = (8,56): 1/7^2 - 1/14^2 = 1/8^2 - 1/56^2;
(m,k) = (14,56): 1/7^2 - 1/8^2 = 1/14^2 - 1/56^2.
Correspondingly, the set {1/x^2 - 1/y^2 : 1 <= x < y <= 56} is of size binomial(56,2) - 5.
PROG
(PARI) b(n) = my(v=[], m2); for(y=1, n-1, for(x=1, y-1, m2=1/(1/x^2-1/y^2+1/n^2); if(m2==m2\1 && issquare(m2), v=concat(v, [m2])))); #Set(v) \\ #v gives A355813
my(s=0); for(n=1, 1500, if(b(n)>0, s+=b(n); print1(s, ", ")))
CROSSREFS
KEYWORD
nonn
AUTHOR
Jianing Song, Jan 07 2025
STATUS
approved