login
A253301
Complement of the Beatty sequence for sqrt(Pi*phi), where phi is the golden ratio.
2
1, 3, 5, 7, 8, 10, 12, 14, 16, 17, 19, 21, 23, 25, 26, 28, 30, 32, 34, 35, 37, 39, 41, 43, 44, 46, 48, 50, 52, 53, 55, 57, 59, 61, 62, 64, 66, 68, 70, 71, 73, 75, 77, 79, 80, 82, 84, 86, 88, 89, 91, 93, 95, 97, 98, 100, 102, 104, 106, 107, 109, 111, 113, 115
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Beatty Sequence
FORMULA
a(n) = floor(n*sqrt(Pi*phi)/(sqrt(Pi*phi)-1)), where phi is the golden ratio.
MATHEMATICA
Table[Floor[n*Sqrt[Pi*GoldenRatio]/(Sqrt[Pi*GoldenRatio] - 1)], {n, 1, 100}] (* G. C. Greubel, Jan 09 2017 *)
PROG
(PARI) phi = (sqrt(5)+1)/2; vector(100, n, floor(n*sqrt(Pi*phi) / (sqrt(Pi*phi)-1)))
CROSSREFS
Cf. A252169, A001622 (golden ratio, phi), A094886 (Pi*phi).
Sequence in context: A059565 A329999 A187841 * A379979 A003144 A247357
KEYWORD
nonn,changed
AUTHOR
Colin Barker, Dec 30 2014
STATUS
approved