OFFSET
1,2
COMMENTS
Also positive integers x in the solutions to 5*x^2-3*y^2+2*x+2*y+1 = 0, the corresponding values of y being A253305.
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,62,-62,-1,1).
FORMULA
a(n) = a(n-1)+62*a(n-2)-62*a(n-3)-a(n-4)+a(n-5).
G.f.: x*(3*x^3+7*x^2-21*x-1) / ((x-1)*(x^2-8*x+1)*(x^2+8*x+1)).
EXAMPLE
1 is in the sequence because H(1)+H(2) = 1+7 = 8 = O(2).
MATHEMATICA
LinearRecurrence[{1, 62, -62, -1, 1}, {1, 22, 77, 1376, 4785}, 30] (* Harvey P. Dale, Nov 05 2024 *)
PROG
(PARI) Vec(x*(3*x^3+7*x^2-21*x-1)/((x-1)*(x^2-8*x+1)*(x^2+8*x+1)) + O(x^100))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 30 2014
STATUS
approved