login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253304
Numbers n such that the sum of the heptagonal numbers H(n) and H(n+1) is equal to the octagonal number O(m) for some m.
2
1, 22, 77, 1376, 4785, 85302, 296605, 5287360, 18384737, 327731030, 1139557101, 20314036512, 70634155537, 1259142532726, 4378178086205, 78046522992512, 271376407189185, 4837625283003030, 16820959067643277, 299854721023195360, 1042628085786694001
OFFSET
1,2
COMMENTS
Also positive integers x in the solutions to 5*x^2-3*y^2+2*x+2*y+1 = 0, the corresponding values of y being A253305.
FORMULA
a(n) = a(n-1)+62*a(n-2)-62*a(n-3)-a(n-4)+a(n-5).
G.f.: x*(3*x^3+7*x^2-21*x-1) / ((x-1)*(x^2-8*x+1)*(x^2+8*x+1)).
EXAMPLE
1 is in the sequence because H(1)+H(2) = 1+7 = 8 = O(2).
MATHEMATICA
LinearRecurrence[{1, 62, -62, -1, 1}, {1, 22, 77, 1376, 4785}, 30] (* Harvey P. Dale, Nov 05 2024 *)
PROG
(PARI) Vec(x*(3*x^3+7*x^2-21*x-1)/((x-1)*(x^2-8*x+1)*(x^2+8*x+1)) + O(x^100))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 30 2014
STATUS
approved