login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253305
Numbers n such that the octagonal number O(n) is equal to the sum of the heptagonal numbers H(m) and H(m+1) for some m.
4
2, 29, 100, 1777, 6178, 110125, 382916, 6825953, 23734594, 423098941, 1471161892, 26225308369, 91188302690, 1625546019917, 5652203604868, 100757627926465, 350345435199106, 6245347385420893, 21715764778739684, 387110780268168881, 1346027070846661282
OFFSET
1,1
COMMENTS
Also positive integers y in the solutions to 5*x^2-3*y^2+2*x+2*y+1 = 0, the corresponding values of x being A253304.
FORMULA
a(n) = a(n-1)+62*a(n-2)-62*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+3*x^3-53*x^2+27*x+2) / ((x-1)*(x^2-8*x+1)*(x^2+8*x+1)).
EXAMPLE
2 is in the sequence because O(2) = 8 = 1+7 = H(1)+H(2).
MATHEMATICA
LinearRecurrence[{1, 62, -62, -1, 1}, {2, 29, 100, 1777, 6178}, 30] (* Harvey P. Dale, Jan 10 2022 *)
PROG
(PARI) Vec(-x*(x^4+3*x^3-53*x^2+27*x+2)/((x-1)*(x^2-8*x+1)*(x^2+8*x+1)) + O(x^100))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 30 2014
STATUS
approved