login
A123004
Expansion of g.f. x^2/(1 - 2*x - 25*x^2).
4
0, 1, 2, 29, 108, 941, 4582, 32689, 179928, 1177081, 6852362, 43131749, 257572548, 1593438821, 9626191342, 59088353209, 358831489968, 2194871810161, 13360530869522, 81592856993069, 497198985724188, 3034219396275101
OFFSET
1,3
REFERENCES
Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002.
FORMULA
a(n) = 2*a(n-1) + 25*a(n-2).
a(n+1) = ((1+sqrt(26))^n - (1-sqrt(26))^n)/(2*sqrt(26)). - Rolf Pleisch, Jul 06 2009
a(n) = (5*i)^(n-2)*ChebyshevU(n-2, -i/5). - G. C. Greubel, Jul 12 2021
MATHEMATICA
Rest@CoefficientList[Series[x^2/(1 -2*x -25*x^2), {x, 0, 40}], x]
Join[{a=0, b=1}, Table[c=2*b+25*a; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
PROG
(Magma) [n le 2 select n-1 else 2*Self(n-1) +25*Self(n-2): n in [1..30]]; // G. C. Greubel, Jul 12 2021
(Sage) [(5*i)^(n-2)*chebyshev_U(n-2, -i/5) for n in [1..30]] # G. C. Greubel, Jul 12 2021
CROSSREFS
Sequences of the form (m*i)^(n-2)*ChebyshevU(n-2, -i/m): A131577 (m=0), A000129 (m=1), A085449 (m=2), A002534 (m=3), A161007 (m=4), this sequence (m=5), A123005 (m=7), A123006 (m=11).
Sequence in context: A141949 A242675 A253305 * A062618 A128842 A308899
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Definition replaced by generating function - the Assoc. Eds. of the OEIS, Mar 27 2010
STATUS
approved