login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123002
Triangle read by rows: T(n, k) = 2^(n-1)*(2*k - 1) - 2^(k-1)*(2*n - 1).
1
0, -1, 0, -1, 2, 0, 1, 10, 12, 0, 7, 30, 44, 40, 0, 21, 74, 116, 136, 112, 0, 51, 166, 268, 344, 368, 288, 0, 113, 354, 580, 776, 912, 928, 704, 0, 239, 734, 1212, 1656, 2032, 2272, 2240, 1664, 0, 493, 1498, 2484, 3432, 4304, 5024, 5440, 5248, 3840, 0
OFFSET
1,5
FORMULA
T(n, k) = 2^(n-1)*(2*k - 1) - 2^(k-1)*(2*n - 1).
Sum_{k=1..n} T(n, k) = 2^(n-1)*(n^2 - 4*n + 2) + (2*n - 1). - G. C. Greubel, Jul 14 2021
EXAMPLE
Triangle begins as:
0;
-1, 0;
-1, 2, 0;
1, 10, 12, 0;
7, 30, 44, 40, 0;
21, 74, 116, 136, 112, 0;
MATHEMATICA
T[n_, k_]:= 2^(n-1)*(2*k-1) -2^(k-1)*(2*n-1);
Table[T[n, k], {n, 12}, {k, n}]//Flatten
PROG
(Magma) [2^(n-1)*(2*k-1) -2^(k-1)*(2*n-1): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 14 2021
(Sage) flatten([[2^(n-1)*(2*k-1) -2^(k-1)*(2*n-1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Jul 14 2021
CROSSREFS
Sequence in context: A185410 A264676 A091803 * A261161 A361951 A137514
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Sep 23 2006
EXTENSIONS
Edited by N. J. A. Sloane, Oct 01 2006
STATUS
approved