The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A185410 A decomposition of the double factorials A001147. 4
 1, 1, 0, 1, 2, 0, 1, 10, 4, 0, 1, 36, 60, 8, 0, 1, 116, 516, 296, 16, 0, 1, 358, 3508, 5168, 1328, 32, 0, 1, 1086, 21120, 64240, 42960, 5664, 64, 0, 1, 3272, 118632, 660880, 900560, 320064, 23488, 128, 0, 1, 9832, 638968, 6049744, 14713840, 10725184, 2225728, 95872, 256, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row sums are A001147. Reversal of A185411. From Peter Bala, Jul 24 2012: (Start) This is the case k = 2 of the 1/k—Eulerian polynomials introduced by Savage and Viswanathan. They give a combinatorial interpretation of the triangle in terms of an ascent statistic on sets of inversion sequences and a geometric interpretation in terms of lecture hall polytopes. Row reverse of A156919. (End) Triangle T(n,k), 0<=k<=n, given by (1, 0, 3, 0, 5, 0, 7, 0, 9, 0, ...) DELTA (0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 12 2013 LINKS G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened S.-M. Ma, T. Mansour, The 1/k-Eulerian polynomials and k-Stirling permutations, arXiv preprint arXiv:1409.6525 [math.CO], 2014. C. D. Savage, G. Viswanathan, The 1/k-Eulerian polynomials, Elec. J. of Comb., Vol. 19, Issue 1, #P9 (2012). FORMULA G.f.: 1/(1-x/(1-2xy/(1-3x/(1-4xy/(1-5x/(1-6xy/(1-7x/(1-8xy/(1- .... (continued fraction). From Peter Bala, Jul 24 2012: (Start) T(n,k) = sum {j=0..k}(-1)^(k-j)/4^j*C(n+1/2,k-j)*C(2*j,j)*(2*j+1)^n. Recurrence equation: T(n+1,k) = (2*k+1)*T(n,k) + 2*(n-k+1)*T(n,k-1). E.g.f.: sqrt(E(x,2*z)) = 1 + z + (1+2*x)*z^2/2! + (1+10*x+4*x^2)*z^3/3! + ..., where E(x,z) = (1-x)/(exp(z*(x-1)) - x) is the e.g.f. for the Eulerian numbers (version A173018). Cf. A156919. Row polynomial R(n,x) = sum {k = 1..n} 2^(n-2*k)*C(2*k,k)*k!*Stirling2(n,k)*(x-1)^(n-k). R(n,4*x)/(1-4*x)^(n+1/2) = sum {k>=0} C(2*k,k)*(2*k+1)^n*x^k. The sequence of rational functions x*R(n,x)/(1-x)^(n+1) conjecturally occurs in the first column of (I - x*A112857)^(-1). (1+x)^(n-1)*R(n,x/(x+1)) gives the n-th row polynomial of A186695. Row sums A001147. Alt. row sums A202038. (End) T(n,k) = 2^k*A102365(n,k). - Philippe Deléham, Feb 12 2013 EXAMPLE Triangle begins: 1, 1, 0, 1, 2, 0, 1, 10, 4, 0, 1, 36, 60, 8, 0, 1, 116, 516, 296, 16, 0, 1, 358, 3508, 5168, 1328, 32, 0, 1, 1086, 21120, 64240, 42960, 5664, 64, 0, 1, 3272, 118632, 660880, 900560, 320064, 23488, 128, 0, 1, 9832, 638968, 6049744, 14713840, 10725184, 2225728, 95872, 256, 0, ... In the Savage-Viswanathan paper, the coefficients appear as 1 1 2 1 10 4 1 36 60 8 1 116 516 296 16 1 358 3508 5168 1328 32 1 1086 21120 64240 42960 5664 64 ... MATHEMATICA T[0, 0] := 1; T[n_, -1] := 0; T[n_, n_] := 0; T[n_, k_] := T[n, k] = (n - k)*T[n - 1, k - 1] + (2*k + 1)*T[n - 1, k]; Join[{1}, Table[If[k < 0, 0, If[k >= n, 0, 2^k*T[n, k]]], {n, 1, 5}, {k, 0, n}] // Flatten] (* G. C. Greubel, Jun 30 2017 *) CROSSREFS Cf. A156919, A001147 (row sums), A112857, A173018, A186695, A202038 (alt. row sums). Sequence in context: A352372 A219034 A256116 * A264676 A091803 A123002 Adjacent sequences: A185407 A185408 A185409 * A185411 A185412 A185413 KEYWORD nonn,easy,tabl AUTHOR Paul Barry, Jan 26 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 16:50 EDT 2023. Contains 365714 sequences. (Running on oeis4.)