login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A202038 Hafnian of a +/-1 array. 14
1, -1, -1, 5, 17, -121, -721, 6845, 58337, -698161, -7734241, 111973685, 1526099057, -25947503401, -419784870961, 8200346492525, 153563504618177, -3389281372287841, -72104198836466881, 1774459993676715365, 42270463533824671697 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

a(n) is the Hafnian of the triangular array (a(i,j))_{1<=i<j<=2n} defined by a(i,j) = (-1)^i. The Hafnian is the same as the Pfaffian except without the alternating signs, that is, the Hafnian of the upper triangular array (a(i,j))_{1<=i<j<=2n} is the sum of the products a(i1,j1)*a(i2,j2)*...*a(in,jn) taken over all perfect matchings of [2n] written so that i1<j1, i2<j2, ..., in<jn and i1<i2<...<in.

a(n) is also the total weight of Dyck n-paths with the weight of a Dyck path defined as (-1)^(sum of the upstep heights) times the product of the upstep heights. For example, the Dyck 4-path P = UUDUUDDD has upsteps ending at heights 1,2,2,3 respectively and so weight(P) = (-1)^8 times (1*2*2*3) = +12.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

StackExchange, Mystery regarding power series of 1/sqrt(1+x^x), Question 6939.

FORMULA

E.g.f.: sqrt(2/(1 + exp(4*x))).

G.f.: 1/(1 + x/(1 - 2 x/(1 + 3 x /(1 - 4 x/(1 + 5 x /(1 - 6 x/ (1 + ...))))))) (continued fraction).

G.f. 1/G(0) where G(k) = 1 + x*(2*k+1)/(1 - (2*k+2)*x/G(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Aug 11 2012

G.f.: 1/(U(0) + x) where U(k)= 1 + x*(2*k+1)*(2*k+2) - x*(2*k+1)*(2*k+2)/(1 + x/U(k+1)) ; (continued fraction, 2-step). - Sergei N. Gladkovskii, Oct 13 2012

G.f.: 1/U(0) where U(k)= 1 + x + x^2*(2*k+1)*(2*k+2)/U(k+1) ; (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 13 2012

a(n) ~ (cos(n*Pi/2)-sin(n*Pi/2)) * 2^(2*n+3/2) *n^n / (Pi^(n+1/2) * exp(n)). - Vaclav Kotesovec, Oct 08 2013

G.f.: T(0)/(1+x) , where T(k) = 1 - x^2*(2*k+1)*(2*k+2)/( x^2*(2*k+1)*(2*k+2) + (1+x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 22 2013

a(n) = 4^(n-1)*Sum_{k=0..n-1} (((-1)^(k+1) * (k+1)! * binomial(2*k+2, k+1) * stirling2(n, k+1)) / 2^(3*k+1)), n>0, a(0)=1. - Vladimir Kruchinin, Mar 09 2016

MATHEMATICA

u[n_, 0] := If[n==0, 1, 0]; 
u[n_, m_] /; m==1 := 2^(n - 1); 
 u[n_, m_] /; m==n>=1 := 1; 
 u[n_, m_] /; 1<m<n := u[n, m] = (2m)*u[n - 1, m] + (2n - 2m + 1)*u[n - 1, m - 1]; v[n_] := Sum[(-1)^m u[n, m], {m, 0, n}]; Table[v[n], {n, 0, 20}]

Flatten[{1, Table[4^(n-1) * Sum[(-1)^(k+1) * (k+1)! * Binomial[2*k + 2, k + 1] * StirlingS2[n, k + 1]/2^(3*k + 1), {k, 0, n-1}], {n, 1, 20}]}] (* Vaclav Kotesovec, Mar 09 2016, after Vladimir Kruchinin *)

PROG

(Maxima)

a(n):=if n=0 then 1 else 4^(n-1)*sum(((-1)^(k+1)*(k+1)!*binomial(2*k+2, k+1)*stirling2(n, k+1))/2^(3*k+1), k, 0, n-1). /* Vladimir Kruchinin, Mar 09 2016 */

CROSSREFS

Absolute values give A012259. Alternating row sums of A185411.

Sequence in context: A180387 A324411 A012174 * A012259 A256459 A113936

Adjacent sequences: A202035 A202036 A202037 * A202039 A202040 A202041

KEYWORD

sign

AUTHOR

David Callan, Dec 13 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 23:46 EST 2022. Contains 358572 sequences. (Running on oeis4.)