|
|
A202036
|
|
Smallest prime residue of x^n (mod n) for x=0..n-1, or 0 if no such prime exists.
|
|
1
|
|
|
0, 0, 2, 0, 2, 3, 2, 0, 0, 5, 2, 0, 2, 2, 2, 0, 2, 0, 2, 5, 7, 3, 2, 0, 7, 3, 0, 0, 2, 19, 2, 0, 2, 2, 2, 0, 2, 5, 5, 0, 2, 7, 2, 5, 17, 2, 2, 0, 19, 0, 2, 13, 2, 0, 11, 0, 7, 5, 2, 0, 2, 2, 0, 0, 2, 3, 2, 13, 2, 11, 2, 0, 2, 3, 7, 5, 2, 13, 2, 0, 0, 2, 2, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
Antti Karttunen, Table of n, a(n) for n = 1..16384
Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
|
|
EXAMPLE
|
a(7) = 2 because k^7 == 0, 1, 2, 3, 4, 5, 6 (mod 7) => 2 is the smallest prime.
|
|
MAPLE
|
for n from 1 to 100 do: W:={}:for k from 0 to n-1 do:z:= irem(k^n, n): if type(z, prime)=true then W:=W union {z}:else fi:od: x:=nops(W): if x<>0 then printf(`%d, `, W[1]): else printf(`%d, `, 0):fi: od:
|
|
PROG
|
(PARI) A202036(n) = { my(z, y=n); for(x=1, n-1, z = lift(Mod(x, n)^n); if(isprime(z), y = min(z, y))); if(y==n, 0, y); }; \\ - Antti Karttunen, May 19 2021
|
|
CROSSREFS
|
Cf. A195812, A196082, A202034, A202035.
Sequence in context: A062244 A169979 A079957 * A246752 A246650 A264940
Adjacent sequences: A202033 A202034 A202035 * A202037 A202038 A202039
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Michel Lagneau, Dec 09 2011
|
|
STATUS
|
approved
|
|
|
|