login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202034
Number of distinct prime residues of k^n (mod n), k=0..n-1.
4
0, 0, 1, 0, 2, 1, 3, 0, 0, 1, 4, 0, 5, 3, 6, 0, 6, 0, 7, 1, 2, 3, 8, 0, 1, 4, 0, 0, 9, 1, 10, 0, 11, 4, 11, 0, 11, 6, 3, 0, 12, 1, 13, 2, 3, 7, 14, 0, 2, 0, 15, 2, 15, 0, 3, 0, 5, 6, 16, 0, 17, 8, 0, 0, 18, 3, 18, 2, 19, 2, 19, 0, 20, 10, 2, 4, 21, 1, 21, 0, 0
OFFSET
1,5
COMMENTS
If n is a prime number, a(n) = A000720(n) - 1 because the number of distinct residues of k^n (mod n) = n.
LINKS
EXAMPLE
a(7) = 3 because k^7 == 0, 1, 2, 3, 4, 5, 6 (mod 7) including 3 prime residues 2, 3, 5.
MAPLE
for n from 1 to 100 do: W:={}:for k from 0 to n-1 do:z:= irem(k^n, n): if type(z, prime)=true then W:=W union {z}:else fi:od: x:=nops(W): printf(`%d, `, x): od:
MATHEMATICA
Table[Length[Select[Union[Table[Mod[k^n, n], {k, 0, n - 1}]], PrimeQ]], {n, 81}] (* Alonso del Arte, Dec 10 2011 *)
Count[Union[#], _?PrimeQ]&/@Table[PowerMod[k, n, n], {n, 100}, {k, 0, n-1}] (* Harvey P. Dale, Sep 24 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Dec 09 2011
STATUS
approved