login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323881
Dirichlet inverse of A126760.
8
1, -1, -1, 0, -2, 1, -3, 0, 0, 2, -4, 0, -5, 3, 2, 0, -6, 0, -7, 0, 3, 4, -8, 0, -5, 5, 0, 0, -10, -2, -11, 0, 4, 6, 0, 0, -13, 7, 5, 0, -14, -3, -15, 0, 0, 8, -16, 0, -8, 5, 6, 0, -18, 0, -3, 0, 7, 10, -20, 0, -21, 11, 0, 0, -2, -4, -23, 0, 8, 0, -24, 0, -25, 13, 5, 0, -2, -5, -27, 0, 0, 14, -28, 0, -5, 15, 10, 0, -30, 0, -1, 0
OFFSET
1,5
LINKS
MATHEMATICA
b[n_] := b[n] = Which[n == 0, 0, 0 < n < 4, 1, EvenQ[n], b[n/2], Mod[n, 3] == 0, b[n/3], Mod[n, 6] == 1, (n-1)/3 + 1, Mod[n, 6] == 5, (n-5)/3 + 2];
a[n_] := a[n] = If[n == 1, 1, -Sum[b[n/d] a[d], {d, Most@ Divisors[n]}]];
Array[a, 100] (* Jean-François Alcover, Feb 16 2020 *)
PROG
(PARI)
up_to = 20000;
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1])*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v (correctly!)
A126760(n) = {n&&n\=3^valuation(n, 3)<<valuation(n, 2); n%3+n\6*2}; \\ From A126760
v323881 = DirInverseCorrect(vector(up_to, n, A126760(n)));
A323881(n) = v323881[n];
CROSSREFS
KEYWORD
sign
AUTHOR
Antti Karttunen, Feb 08 2019
STATUS
approved