Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jan 06 2021 09:06:39
%S 1,-1,-1,0,-2,1,-3,0,0,2,-4,0,-5,3,2,0,-6,0,-7,0,3,4,-8,0,-5,5,0,0,
%T -10,-2,-11,0,4,6,0,0,-13,7,5,0,-14,-3,-15,0,0,8,-16,0,-8,5,6,0,-18,0,
%U -3,0,7,10,-20,0,-21,11,0,0,-2,-4,-23,0,8,0,-24,0,-25,13,5,0,-2,-5,-27,0,0,14,-28,0,-5,15,10,0,-30,0,-1,0
%N Dirichlet inverse of A126760.
%H Antti Karttunen, <a href="/A323881/b323881.txt">Table of n, a(n) for n = 1..20000</a>
%t b[n_] := b[n] = Which[n == 0, 0, 0 < n < 4, 1, EvenQ[n], b[n/2], Mod[n, 3] == 0, b[n/3], Mod[n, 6] == 1, (n-1)/3 + 1, Mod[n, 6] == 5, (n-5)/3 + 2];
%t a[n_] := a[n] = If[n == 1, 1, -Sum[b[n/d] a[d], {d, Most@ Divisors[n]}]];
%t Array[a, 100] (* _Jean-François Alcover_, Feb 16 2020 *)
%o (PARI)
%o up_to = 20000;
%o DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1])*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v (correctly!)
%o A126760(n) = {n&&n\=3^valuation(n, 3)<<valuation(n, 2); n%3+n\6*2}; \\ From A126760
%o v323881 = DirInverseCorrect(vector(up_to,n,A126760(n)));
%o A323881(n) = v323881[n];
%Y Cf. A126760, A323882, A323883, A323886.
%K sign
%O 1,5
%A _Antti Karttunen_, Feb 08 2019