The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002431 Numerators in Taylor series for cot x. (Formerly M0124 N0050) 4
 1, -1, -1, -2, -1, -2, -1382, -4, -3617, -87734, -349222, -310732, -472728182, -2631724, -13571120588, -13785346041608, -7709321041217, -303257395102, -52630543106106954746, -616840823966644, -522165436992898244102, -6080390575672283210764, -10121188937927645176372 (list; graph; refs; listen; history; text; internal format)
 OFFSET -1,4 COMMENTS Can be written as numerators of multiples of Bernoulli numbers. From Wolfdieter Lang, Jun 12 2017: (Start) cot(x) = Sum_{k>=0} r(k-1)*x^(2*k-1), with the rationals r(n) = a(n)/A036278(n), for n >= -1, for 0 < |x| < Pi. coth(x) = Sum_{k>=0} (-1)^k*r(k-1)*x^(2*k-1), for 0 < |x| < Pi. Exercise 2., ch. VI, in Whittaker-Watson, p. 122: 4*Integral_{y=0..infinity} sin(x*y)/(exp(2*Pi*y)-1) dy = coth(x/2) - 2/x. Attributed to Legendre. (End) Let c(1) = 1/3, c(n) = (Sum_{k=1..n-1} c(k)*c(n-k))/(2*n+1) = -(-1)^n * 2^(2*n) * bernoulli(2*n) / (2*n)!. Then f(x) := 1 - x * cot(x) = Sum_{n>=1} c(n) * x^(2*n) and d/dx (x*f(x)) = x^2 + f(x)^2. Now a(n) = - numerator of c(n+1) for n>=0. - Michael Somos, Apr 25 2020 REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.70). G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477. L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88. A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 74. H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1, p. 19. H. A. Rothe, in C. F. Hindenburg, editor, Sammlung Combinatorisch-Analytischer Abhandlungen, Vol. 2, Chap. XI. Fleischer, Leipzig, 1800, p. 331. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, 4th ed., 1958, p. 122, Exercise 2. LINKS Seiichi Manyama, Table of n, a(n) for n = -1..313 (terms -1..100 from T. D. Noe) M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.70). Eric Weisstein's World of Mathematics, Cotangent Index entries for sequences related to Bernoulli numbers. FORMULA a(n) = - numerator(A000182(n)/(4^n-1)) for n>0. cot(x) = Sum_{k>=0} (-1)^k*B_{2*k}*4^k*x^(2*k-1)/(2*k)!. a(n) = numerator(r(n)), with the negative rational numbers r(n) = [x^n]( (cot(sqrt(x))-1/sqrt(x))/sqrt(x)), n >= 0. - Wolfdieter Lang, Oct 07 2016 EXAMPLE G.f. = 1/x - (1/3)*x - (1/45)*x^3 - (2/945)*x^5 - (1/4725)*x^7 - (2/93555)*x^9 + O(x^11). MAPLE b := n -> (-1)^n*2^(2*n)*bernoulli(2*n)/(2*n)!; a := n -> numer(b(n+1)); seq(a(i), i=-1..25); # Peter Luschny, Jun 08 2009 MATHEMATICA a[n_] := (-1)^(n+1)*4^(n+1)*BernoulliB[2*n+2]/(2*n+2)! // Numerator; Table[a[n], {n, -1, 25}] (* Jean-François Alcover, Apr 14 2014, after Peter Luschny *) PROG (PARI) apply(r->numerator(r), Vec(1/tan(x))) \\ Charles R Greathouse IV, Apr 14 2014 (PARI) a(n) = numerator((-1)^(n+1)*4^(n+1)*bernfrac(2*n+2)/(2*n+2)!); \\ Altug Alkan, Dec 02 2015 (Python) from sympy import bernoulli, factorial def a(n): return ((-4)**(n+1)*bernoulli(2*n+2)/factorial(2*n+2)).numerator() [a(n) for n in range(-1, 25)] # Indranil Ghosh, Jun 23 2017 (Magma) [Numerator( (-1)^(n+1)*4^(n+1)*Bernoulli(2*n+2)/Factorial(2*n+2) ): n in [-1..25]]; // G. C. Greubel, Jul 03 2019 (Sage) [numerator( (-1)^(n+1)*4^(n+1)*bernoulli(2*n+2)/factorial(2*n+2) ) for n in (-1..25)] # G. C. Greubel, Jul 03 2019 (GAP) List([-1..25], n-> NumeratorRat( (-1)^(n+1)*4^(n+1)* Bernoulli(2*n+2)/Factorial(2*n+2) )) # G. C. Greubel, Jul 03 2019 CROSSREFS Cf. A000182, A036278 (denominators). Sequence in context: A228005 A177438 A367762 * A259328 A202034 A323881 Adjacent sequences: A002428 A002429 A002430 * A002432 A002433 A002434 KEYWORD sign,frac,easy,nice AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 05:24 EST 2023. Contains 367630 sequences. (Running on oeis4.)