login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323886
Dirichlet inverse of A004718, Per Nørgård's "infinity sequence".
5
1, 1, -2, 0, 0, -2, -3, 0, 2, 0, -1, 0, 1, -3, -4, 0, 0, 2, -3, 0, 11, -1, -2, 0, -3, 1, 0, 0, 2, -4, -5, 0, 2, 0, -1, 0, 1, -3, -8, 0, -1, 11, -2, 0, 16, -2, -3, 0, 10, -3, -4, 0, -2, 0, -1, 0, 8, 2, 1, 0, 3, -5, -26, 0, 0, 2, -3, 0, 7, -1, -2, 0, -3, 1, 12, 0, 8, -8, -5, 0, -5, -1, -2, 0, 0, -2, -11, 0, -2, 16, -7, 0, 21, -3, -4, 0, -3, 10, 0, 0, 2, -4, -5, 0
OFFSET
1,3
COMMENTS
The composer Per Nørgård's name is also written in the OEIS as Per Noergaard.
LINKS
MATHEMATICA
b[0] = 0;
b[n_?EvenQ] := b[n] = -b[n/2];
b[n_] := b[n] = b[(n - 1)/2] + 1;
a[n_] := a[n] = If[n == 1, 1, -Sum[b[n/d] a[d], {d, Most@ Divisors[n]}]];
Array[a, 100] (* Jean-François Alcover, Feb 16 2020 *)
PROG
(PARI)
up_to = 65537;
A004718list(up_to) = { my(v=vector(up_to)); v[1]=1; v[2]=-1; for(n=3, up_to, v[n] = if(n%2, v[n>>1]+1, -v[n/2])); (v); }; \\ After code in A004718.
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1])*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v (correctly!).
v323886 = DirInverseCorrect(A004718list(up_to));
A323886(n) = v323886[n];
CROSSREFS
KEYWORD
sign
AUTHOR
Antti Karttunen, Feb 08 2019
STATUS
approved