login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A202039 Triangle T(n,m) = coefficient of x^n in expansion of (1/2-1/2*(1-8*x)^1/4)^m = sum(n>=m, T(n,m) x^n), n>=1, m>=1. 0
1, 3, 1, 14, 6, 1, 77, 37, 9, 1, 462, 238, 69, 12, 1, 2926, 1582, 510, 110, 15, 1, 19228, 10780, 3738, 920, 160, 18, 1, 129789, 74877, 27405, 7389, 1495, 219, 21, 1, 894102, 528022, 201569, 58156, 13075, 2262, 287, 24, 1, 6258714, 3769370, 1488762, 452826, 110143, 21417, 3248, 364, 27, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..55.

FORMULA

T(n,m) = (m*sum(k=0..n-m, (-1)^(n-m-k)*binomial(n+k-1,n-1)*sum(j=0..k, binomial(j,n-m+(-3)*k+2*j)*binomial(k,j)*2^(2*n-2*m+(-5)*k+3*j)*3^(-n+m+3*k-j))))/n.

T(n,m) = (m*sum(k=m..n,binomial(-m+2*k-1,k-1)*2^(n-k)*binomial(2*n-k-1,n-1)))/n. - Vladimir Kruchinin, Dec 21 2011

T(n,m) = (m/n)*2^(n-m)*binomial(2*n-m-1,n-m)*hypergeometric([1/2+m/2,m/2,m-n],[m,1+m-2*n],2) for n>1, m>1. - Peter Luschny, Jan 04 2012

EXAMPLE

1,

3, 1,

14, 6, 1,

77, 37, 9, 1,

462, 238, 69, 12, 1,

2926, 1582, 510, 110, 15, 1

PROG

(Maxima)

T(n, m):=(m*sum((-1)^(n-m-k)*binomial(n+k-1, n-1)*sum(binomial(j, n-m+(-3)*k+2*j)*binomial(k, j)*2^(2*n-2*m+(-5)*k+3*j)*3^(-n+m+3*k-j), j, 0, k), k, 0, n-m))/n;

T(n, m):=(m*sum(binomial(-m+2*k-1, k-1)*2^(n-k)*binomial(2*n-k-1, n-1), k, m, n))/n;

CROSSREFS

Sequence in context: A074960 A163545 A164807 * A122689 A204121 A079640

Adjacent sequences:  A202036 A202037 A202038 * A202040 A202041 A202042

KEYWORD

nonn,tabl

AUTHOR

Vladimir Kruchinin, Dec 10 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 06:50 EST 2016. Contains 278902 sequences.