login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A202039 Triangle T(n,m) = coefficient of x^n in expansion of (1/2-1/2*(1-8*x)^1/4)^m = sum(n>=m, T(n,m) x^n), n>=1, m>=1. 0
1, 3, 1, 14, 6, 1, 77, 37, 9, 1, 462, 238, 69, 12, 1, 2926, 1582, 510, 110, 15, 1, 19228, 10780, 3738, 920, 160, 18, 1, 129789, 74877, 27405, 7389, 1495, 219, 21, 1, 894102, 528022, 201569, 58156, 13075, 2262, 287, 24, 1, 6258714, 3769370, 1488762, 452826, 110143, 21417, 3248, 364, 27, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..55.

FORMULA

T(n,m) = (m*sum(k=0..n-m, (-1)^(n-m-k)*binomial(n+k-1,n-1)*sum(j=0..k, binomial(j,n-m+(-3)*k+2*j)*binomial(k,j)*2^(2*n-2*m+(-5)*k+3*j)*3^(-n+m+3*k-j))))/n.

T(n,m) = (m*sum(k=m..n,binomial(-m+2*k-1,k-1)*2^(n-k)*binomial(2*n-k-1,n-1)))/n. - Vladimir Kruchinin, Dec 21 2011

T(n,m) = (m/n)*2^(n-m)*binomial(2*n-m-1,n-m)*hypergeometric([1/2+m/2,m/2,m-n],[m,1+m-2*n],2) for n>1, m>1. - Peter Luschny, Jan 04 2012

EXAMPLE

1,

3, 1,

14, 6, 1,

77, 37, 9, 1,

462, 238, 69, 12, 1,

2926, 1582, 510, 110, 15, 1

PROG

(Maxima)

T(n, m):=(m*sum((-1)^(n-m-k)*binomial(n+k-1, n-1)*sum(binomial(j, n-m+(-3)*k+2*j)*binomial(k, j)*2^(2*n-2*m+(-5)*k+3*j)*3^(-n+m+3*k-j), j, 0, k), k, 0, n-m))/n;

T(n, m):=(m*sum(binomial(-m+2*k-1, k-1)*2^(n-k)*binomial(2*n-k-1, n-1), k, m, n))/n;

CROSSREFS

Sequence in context: A074960 A163545 A164807 * A122689 A204121 A079640

Adjacent sequences:  A202036 A202037 A202038 * A202040 A202041 A202042

KEYWORD

nonn

AUTHOR

Vladimir Kruchinin, Dec 10 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 16 00:29 EDT 2014. Contains 240534 sequences.