The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A186695 A Galton triangle: T(n,k) = (2k-1)*(T(n-1,k)+T(n-1,k-1)): a type B analog of the ordered Bell numbers A019538. 5
 1, 1, 3, 1, 12, 15, 1, 39, 135, 105, 1, 120, 870, 1680, 945, 1, 363, 4950, 17850, 23625, 10395, 1, 1092, 26565, 159600, 373275, 374220, 135135, 1, 3279, 138285, 1303155, 4795875, 8222445, 6621615, 2027025 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The row polynomials R(n,x) of A019538 satisfy the recurrence relation R(n+1,x) = x*d/dx((1+x)*R(n,x)), and have the expansion R(n,x) = sum {k = 1..n} k!*Stirling2(n,k)*x^k. Here we consider a sequence of polynomials P(n,x) (n>=1) defined by means of the similar recursion P(n+1,x) = x*d/dx((1+x^2)*P(n,x)), with starting value P(1,x) = x. The first few polynomials are P(1,x) = x, P(2,x) = x+3*x^3, P(3,x) = x+12*x^3+15*x^5, and P(4,x) = x+39*x^3+135*x^5+105*x^7. Clearly, the P(n,x) are odd polynomials of the form P(n,x) = sum {k = 1..n} T(n,k)*x^(2*k-1). This triangle lists the coefficients T(n,k). They are related to A039755, the type B Stirling numbers of Suter, by T(n,k) = (2*k-1)!!*A039755(n-1,k-1). LINKS Erich Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Tech Report TR 99-05, 1999. Erich Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Discrete Math. 239 No. 1-3, 33-51 (2001). FORMULA T(n+1,k+1) = (2*k+1)!/(2^k*k!)^2*sum {j = 0..k}(-1)^(k-j)*binomial(k,j)*(2*j+1)^n. Recurrence relation: T(n,k) = (2k-1)*(T(n-1,k)+T(n-1,k-1)) with boundary conditions T(n,1) = 1, T(1,k) = 0 for k>=2. E.g.f.: F(x,t) = x/(1+x)*(exp(t)/sqrt[(1+x)-x*exp(2*t)] - 1) = sum {n = 1..inf} R(n,x)*t^n/n! = x*t + (x+3*x^2)*t^2/2! + (x+12*x^2+15*x^3)*t^3/3! + .... Compare with the egf for A019538, which is x/(1+x)*(exp(t)/[(1+x)-x*exp t)]-1). The row polynomials R(n,x) are related to the polynomials P(n,x) of the comments section by P(n,x) = 1/x*R(n,x^2). The generating function F(x,t) satisfies the partial differential equation d/dt(F) = 2*x*(1+x)*d/dx(F) + (x-1)*F + x. It follows that the polynomials P(n,x) := sum {k = 1..n} T(n,k)*x^(2*k-1) satisfy the recurrence P(n+1,x) = x*d/dx((1+x^2)*P(n,x)), with P(1,x) = x. (Cf. the recurrence relation for row polynomials of A185896). The recurrence relation for T(n,k) given above now follows. The row polynomials R(n,x) = sum {k = 1..n} T(n,k)*x^k satisfy R(n,-x-1) = (-1)^n*(1+x)/x *S(n,x), where S(n,x) is the n-th row polynomial of A187075. In addition, R(n,1/(x-1)) = 1/(x-1)^n*Q(n-1,x), where Q(n,x) is the n-th row polynomial of A156919. Row sums are [1,4,28,280,3616...] = 1/2*A124212(n) for n>=1. Main diagonal is [1,3,15,105,...] = A001147(k) for k>=1. Put S(n) = sum {k = 1..n} (-1)^k*T(n,k)/(k+1). Then for m>=2, S(2*m-1) = S(2*m) = (4^m-1)*Bernoulli(2*m)/m. From Peter Bala, Aug 30 2016: (Start) n-th row polynomial R(n,x) = 1/(1 + x)^(3/2) * Sum_{k >= 0} (1/4)^k*(x/(1 + x))^k*binomial(2*k,k)*(2*k + 1)^n. R(n,x) = 1/(1 + x)*Sum_{k = 0..n} binomial(2*k,k)*A145901(n,k)* (x/4)^k. (End) EXAMPLE Triangle begins n\k.|..1.....2.....3......4......5......6 ========================================= ..1.|..1 ..2.|..1.....3 ..3.|..1....12....15 ..4.|..1....39...135....105 ..5.|..1...120...870...1680....945 ..6.|..1...363..4950..17850..23625..10395 .. Examples of recurrence relation ... T(4,3) = 5*(T(3,3)+T(3,2)) = 5*(15+12)= 135; ... T(6,4) = 7*(T(5,4)+T(5,3)) = 7*(1680+870) = 17850. MAPLE A186695 := proc(n, k) option remember; if k < 1 or k > n then 0; elif k = 1 then 1; else (2*k-1)*(procname(n-1, k) + procname(n-1, k-1)) ; end if; end proc: seq(seq(A186695(n, k), k = 1..n), n = 1..10); MATHEMATICA T[n_, k_] := (2k-1)! Sum[(-1)^(k-j-1) (2j+1)^(n-1) Binomial[k-1, j], {j, 0, k-1}] / (2^(k-1) (k-1)!)^2; Table[T[n, k], {n, 1, 8}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 02 2019 *) CROSSREFS Cf. A001147, A019538, A039755, A124212, A145901, A156919, A187075. Sequence in context: A268298 A291418 A219512 * A210587 A019232 A185697 Adjacent sequences:  A186692 A186693 A186694 * A186696 A186697 A186698 KEYWORD nonn,easy,tabl AUTHOR Peter Bala, Mar 26 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 6 17:59 EDT 2021. Contains 343586 sequences. (Running on oeis4.)