login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210587
Triangle T(n,k) read by rows: T(n,k) is the number of unrooted hypertrees on n labeled vertices with k hyperedges, n >= 2, 1 <= k <= n-1.
3
1, 1, 3, 1, 12, 16, 1, 35, 150, 125, 1, 90, 900, 2160, 1296, 1, 217, 4410, 22295, 36015, 16807, 1, 504, 19264, 179200, 573440, 688128, 262144, 1, 1143, 78246, 1240029, 6889050, 15707034, 14880348, 4782969, 1, 2550, 302500, 7770000, 69510000, 264600000, 462000000, 360000000, 100000000
OFFSET
2,3
COMMENTS
See A210586 for the definition of a hypertree and for the enumeration of rooted hypertrees.
LINKS
J. McCammond and J. Meier, The hypertree poset and the l^2-Betti numbers of the motion group of the trivial link, Mathematische Annalen 328 (2004), no. 4, 633-652.
FORMULA
T(n,k) = n^(k-1)*Stirling2(n-1,k). T(n,k) = 1/n*A210586(n,k).
E.g.f. A(x,t) = t + x*t^2/2! + (x + 3*x^2)*t^3/3! + ..., where t*d/dt(A(x,t)) is the e.g.f. for A210586.
Dobinski-type formula for the row polynomials: R(n,x) = exp(-n*x)*Sum_{k = 0..inf} n^(k-1)*k^(n-1)x^k/k!.
Row sums A030019.
EXAMPLE
Triangle begins
.n\k.|....1.....2......3......4......5......6
= = = = = = = = = = = = = = = = = = = = = = =
..2..|....1
..3..|....1.....3
..4..|....1....12.....16
..5..|....1....35....150....125
..6..|....1....90....900...2160...1296
..7..|....1...217...4410..22295..36015..16807
...
Example of a hypertree with two hyperedges, one a 2-edge {3,4} and one a 3-edge {1,2,3}.
........__________........................
......./..........\.______................
......|....1...../.\......\...............
......|.........|.3.|....4.|..............
......|....2.....\./______/...............
.......\__________/.......................
..........................................
T(4,2) = 12. The twelve unrooted hypertrees on 4 vertices {1,2,3,4} with 2 hyperedges (one a 2-edge and one a 3-edge) have hyperedges:
{1,2,3} and {3,4}; {1,2,3} and {2,4}; {1,2,3} and {1,4};
{1,2,4} and {1,3}; {1,2,4} and {2,3}; {1,2,4} and {3,4};
{1,3,4} and {1,2}; {1,3,4} and {2,3}; {1,3,4} and {2,4};
{2,3,4} and {1,2}; {2,3,4} and {1,3}; {2,3,4} and {1,4}.
MAPLE
with(combinat):
A210587 := (n, k) -> n^(k-1)*stirling2(n-1, k):
for n from 2 to 10 do seq(A210587(n, k), k = 1..n-1) end do;
# Peter Bala, Oct 28 2015
MATHEMATICA
T[n_, k_] := n^(k - 1)*StirlingS2[n - 1, k];
Table[T[n, k], {n, 2, 10}, {k, 1, n - 1}] // Flatten (* Jean-François Alcover, Sep 19 2019 *)
PROG
(PARI) T(n, k) = {n^(k-1)*stirling(n-1, k, 2)}
for(n=2, 10, for(k=1, n-1, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Aug 28 2018
CROSSREFS
Cf. A030019 (row sums). Cf. A210586, A048993.
Sequence in context: A291418 A219512 A186695 * A019232 A185697 A348829
KEYWORD
nonn,easy,tabl
AUTHOR
Peter Bala, Mar 26 2012
STATUS
approved