OFFSET
2,3
COMMENTS
See A210586 for the definition of a hypertree and for the enumeration of rooted hypertrees.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 2..1276
R. Bacher, On the enumeration of labelled hypertrees and of labelled bipartite trees, arXiv:1102.2708 [math.CO], 2011.
J. McCammond and J. Meier, The hypertree poset and the l^2-Betti numbers of the motion group of the trivial link, Mathematische Annalen 328 (2004), no. 4, 633-652.
FORMULA
EXAMPLE
Triangle begins
.n\k.|....1.....2......3......4......5......6
= = = = = = = = = = = = = = = = = = = = = = =
..2..|....1
..3..|....1.....3
..4..|....1....12.....16
..5..|....1....35....150....125
..6..|....1....90....900...2160...1296
..7..|....1...217...4410..22295..36015..16807
...
Example of a hypertree with two hyperedges, one a 2-edge {3,4} and one a 3-edge {1,2,3}.
........__________........................
......./..........\.______................
......|....1...../.\......\...............
......|.........|.3.|....4.|..............
......|....2.....\./______/...............
.......\__________/.......................
..........................................
T(4,2) = 12. The twelve unrooted hypertrees on 4 vertices {1,2,3,4} with 2 hyperedges (one a 2-edge and one a 3-edge) have hyperedges:
{1,2,3} and {3,4}; {1,2,3} and {2,4}; {1,2,3} and {1,4};
{1,2,4} and {1,3}; {1,2,4} and {2,3}; {1,2,4} and {3,4};
{1,3,4} and {1,2}; {1,3,4} and {2,3}; {1,3,4} and {2,4};
{2,3,4} and {1,2}; {2,3,4} and {1,3}; {2,3,4} and {1,4}.
MAPLE
with(combinat):
A210587 := (n, k) -> n^(k-1)*stirling2(n-1, k):
for n from 2 to 10 do seq(A210587(n, k), k = 1..n-1) end do;
# Peter Bala, Oct 28 2015
MATHEMATICA
T[n_, k_] := n^(k - 1)*StirlingS2[n - 1, k];
Table[T[n, k], {n, 2, 10}, {k, 1, n - 1}] // Flatten (* Jean-François Alcover, Sep 19 2019 *)
PROG
(PARI) T(n, k) = {n^(k-1)*stirling(n-1, k, 2)}
for(n=2, 10, for(k=1, n-1, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Aug 28 2018
CROSSREFS
KEYWORD
AUTHOR
Peter Bala, Mar 26 2012
STATUS
approved