login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210588
Twenty-seven smaller strong pseudoprimes to bases 2,3,5,7 arranged in order given by a function f:N->{1..27}
1
6597606223981, 3474749660383, 5792018372251, 307768373641, 3477707481751, 1362242655901, 3461715915661, 4341937413061, 5537838510751, 10710604680091, 2273312197621, 602248359169, 10087771603687, 3343433905957, 2366338900801, 8006855187361, 457453568161, 11377272352951, 118670087467, 354864744877, 2152302898747, 528929554561, 546348519181, 315962312077, 3215031751, 4777422165601, 1871186716981
OFFSET
1,1
COMMENTS
We can use a table with the terms of this sequence, and the function f:N->{1..27} defined below, in the final of a primality test based on those strong pseudoprimes. Since A074773(28) = 11,458,457,613,541; this test is valid for numbers up to 1.1*10^13. Only one table look-up will be necessary to see if an odd integer x is prime. From the first reference we find appropriate algorithms for large tables.
f(x) = (h1=h2)*f1+(h1>h2)*f1+(h2>h1)*f2 + 1, where f1 = x mod 24729742 mod 27, f2 = x mod 24729769 mod 27, h1 = floor(164352/(2^f1)) mod 2, and h2 = floor(164352/(2^f2)) mod 2.
Terms computed using table by Charles R Greathouse IV. See A074773.
EXAMPLE
A074773(1) appears in the 25th place because f(A074773(1)) = 25.
PROG
(PARI)
f(x)={f1 = x % 24729742 % 27; f2 = x % 24729769 % 27; h1 = 164352 >> f1 % 2;
h2=164352 >> f2 % 2; return((h1==h2)*f1 + (h1>h2)*f1+(h2>h1)*f2 + 1); };
p1=[3215031751, 118670087467, 307768373641, 315962312077, 354864744877, 457453568161];
p2=[528929554561, 546348519181, 602248359169, 1362242655901, 1871186716981, 2152302898747];
p3=[2273312197621, 2366338900801, 3343433905957, 3461715915661, 3474749660383];
p4=[3477707481751, 4341937413061, 4777422165601, 5537838510751, 5792018372251];
p5=[6597606223981, 8006855187361, 10087771603687, 10710604680091, 11377272352951];
a=vector(27); for(i=1, 6, a[f(p1[i])] = p1[i]); for(i=1, 6, a[f(p2[i])] = p2[i]);
for(i=1, 5, a[f(p3[i])] = p3[i]); for(i=1, 5, a[f(p4[i])] = p4[i]);
for(i=1, 5, a[f(p5[i])] = p5[i]); for(i=1, 27, print1(a[i], ", "));
CROSSREFS
KEYWORD
nonn,fini,full
AUTHOR
Washington Bomfim, Mar 23 2012
STATUS
approved