login
A378474
The number of n-colorings of the vertices of the truncated cuboctahedron up to rotation and reflection.
0
0, 1, 5864068667776, 1661800897546646288751, 1650586719047285117763813376, 74014868308343792955106160546875, 467755368903219944377426648894114176, 764653504526960946768130306131125170501, 464598858302721315450530067459906444722176
OFFSET
0,3
COMMENTS
Equivalently, the number of n-colorings of the faces of the disdyakis dodecahedron, which is the polyhedral dual of the truncated cuboctahedron.
Colorings are counted up to the full octahedral group of order 48.
FORMULA
a(n) = 1/48*(n^48 + 19*n^24 + 8*n^16 + 12*n^12 + 8*n^8).
Asymptotically, a(n) ~ n^48/48.
KEYWORD
nonn,easy,new
AUTHOR
Peter Kagey, Nov 27 2024
STATUS
approved