OFFSET
1,1
COMMENTS
In base-2, Pi is: 11.00100100001111110110101010001... For this sequence, the integer part of Pi is ignored, and the first fractional bit is numbered one.
No further terms <= 4*10^9. - Michael S. Branicky, Dec 04 2024
FORMULA
a(n) >= A178708(n). - Michael S. Branicky, Dec 13 2024
EXAMPLE
The first run of a single "0" bit is at position 17, so a(1) = 17.
The first run of exactly 2 zeros is at position 1, so a(2) = 1.
PROG
(Python)
import gmpy2
gmpy2.get_context().precision = 2000000
pi = gmpy2.const_pi()
# Convert Pi to binary representation
binary_pi = gmpy2.digits(pi, 2)[0] # zero-th element is the string of bits
outVec = []
for lenRun in range(1, 20):
str0 = "".join( ["0" for _ in range (lenRun)])
l1 = binary_pi.find("1"+str0+"1")
outVec.append(l1)
print(outVec)
CROSSREFS
KEYWORD
nonn,base,more,new
AUTHOR
James S. DeArmon, Nov 27 2024
EXTENSIONS
a(21)-a(31) from Michael S. Branicky, Dec 04 2024
Clarified definition, added escape clause - N. J. A. Sloane, Dec 23 2024
STATUS
approved