login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345865
Numbers that are the sum of two cubes in exactly four ways.
4
6963472309248, 12625136269928, 21131226514944, 26059452841000, 55707778473984, 74213505639000, 95773976104625, 101001090159424, 159380205560856, 169049812119552, 174396242861568, 188013752349696, 208475622728000, 300656502205416, 340878679288056
OFFSET
1,1
COMMENTS
Differs from A023051 at term 143 because 48988659276962496 = 331954^3 + 231518^3 = 336588^3 + 221424^3 = 342952^3 + 205292^3 = 362753^3 + 107839^3 = 365757^3 + 38787^3.
LINKS
EXAMPLE
12625136269928 is a term because 12625136269928 = 21869^3 + 12939^3 = 22580^3 + 10362^3 = 23066^3 + 7068^3 = 23237^3 + 4275^3.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 2):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 4])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved