login
A343969
Numbers that are the sum of three positive cubes in exactly 4 ways.
7
13896, 40041, 44946, 52200, 53136, 58995, 76168, 82278, 93339, 94184, 105552, 110683, 111168, 112384, 112832, 113400, 143424, 149416, 149904, 167616, 169560, 171296, 175104, 196776, 197569, 208144, 216126, 221696, 222984, 224505, 235808, 240813, 252062, 255312, 262781, 266031, 281728, 291213
OFFSET
1,1
COMMENTS
Differs from A343968 at term 20 because 161568 = 2^3 + 16^3 + 54^3 = 9^3 + 15^3 + 54^3 = 17^3 + 39^3 + 46^3 = 18^3 + 19^3 + 53^3 = 26^3 + 36^3 + 46^3.
LINKS
David Consiglio, Jr., Table of n, a(n) for n = 1..20000
EXAMPLE
44946 is a term because 44946 = 7^3 + 12^3 + 35^3 = 9^3 + 17^3 + 34^3 = 11^3 + 24^3 + 31^3 = 16^3 + 17^3 + 33^3.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 50)]
for pos in cwr(power_terms, 3):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 4])
for x in range(len(rets)):
print(rets[x])
KEYWORD
nonn
AUTHOR
STATUS
approved