login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210591
G.f. satisfies: A(x) = x + (A(x) - A(x)^2) * A(A(x)) where A(0)=0.
0
1, 1, 2, 6, 24, 116, 636, 3823, 24729, 170187, 1236536, 9431875, 75202833, 624669675, 5390981898, 48229922730, 446459295023, 4269397134669, 42117578374712, 428090022559608, 4478159536973989, 48163581285504612, 532096844251876645, 6033134642314812383
OFFSET
1,3
COMMENTS
Compare g.f. to a g.f. C(x) of the Catalan numbers (A000108):
C(x) = x + C(x)*C(C(x)) - C(x)*C(C(x))^2 where C(x) = (1-sqrt(1-4*x))/2.
FORMULA
G.f. satisfies: A( x - (x-x^2)*A(x) ) = x.
G.f. satisfies: A( C(x) - x*A(C(x)) ) = C(x) where C(x) = (1-sqrt(1-4*x))/2 is a g.f. of the Catalan numbers.
EXAMPLE
G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 24*x^5 + 116*x^6 + 636*x^7 + 3823*x^8 +...
Related expansions.
A(A(x)) = x + 2*x^2 + 6*x^3 + 23*x^4 + 106*x^5 + 562*x^6 + 3316*x^7 +...
A(x)^2 = x^2 + 2*x^3 + 5*x^4 + 16*x^5 + 64*x^6 + 304*x^7 + 1636*x^8 +...
A(x) - A(x)^2 = x + x^4 + 8*x^5 + 52*x^6 + 332*x^7 + 2187*x^8 +...
The series reversion of g.f. A(x) begins:
x - (x-x^2)*A(x) = x - x^2 - x^4 - 4*x^5 - 18*x^6 - 92*x^7 - 520*x^8 -...
PROG
(PARI) {a(n)=local(A=x+x^2); for(i=1, n, A=serreverse(x-(x-x^2)*A +x*O(x^n))); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A190761.
Sequence in context: A212198 A182216 A097483 * A342141 A266332 A007405
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 23 2012
STATUS
approved