login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190761
Expansion of g.f. A(x) satisfying A(x) = x + A(A(x))^2 - A(A(x))^3.
6
1, 1, 3, 14, 84, 592, 4670, 40108, 368670, 3586321, 36632763, 390694000, 4332131804, 49777965585, 591173511887, 7241437905916, 91331043654080, 1184322726542850, 15770586926609276, 215423253906689779, 3015794930248824111, 43233248160139146114
OFFSET
1,3
COMMENTS
Compare to a formula for a g.f. of the Catalan numbers (A000108):
C(x) = x + C(x)*C(C(x)) - C(x)*C(C(x))^2 where C(x) = (1-sqrt(1-4*x))/2.
LINKS
FORMULA
From Paul D. Hanna, Dec 30 2023: (Start)
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x) = x + A(A(x))^2 - A(A(x))^3.
(2) x = A( x - A(x)^2 + A(x)^3 ).
(3) x = A(A( x - x^2 + x^3 - A(x)^2 + A(x)^3 )).
(4) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^(2*n) * (1 - A(x))^n / n!.
(5) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^(2*n)*(1 - A(x))^n/x / n! ).
(6) A(x) is the unique solution to variable A in the infinite system of simultaneous equations starting with:
A = x + B^2 - B^3;
B = A + C^2 - C^3;
C = B + D^2 - D^3;
D = C + E^2 - E^3; ...
where B = A(A(x)), C = A(A(A(x))), D = A(A(A(A(x)))), etc.
... (End)
EXAMPLE
G.f.: A(x) = x + x^2 + 3*x^3 + 14*x^4 + 84*x^5 + 592*x^6 + 4670*x^7 + 40108*x^8 + 368670*x^9 + 3586321*x^10 + ...
Related series.
A(x) = x + A(A(x))^2 - A(A(x))^3 where
A(A(x)) = x + 2*x^2 + 8*x^3 + 44*x^4 + 294*x^5 + 2244*x^6 + 18888*x^7 + ...
A(A(x))^2 = x^2 + 4*x^3 + 20*x^4 + 120*x^5 + 828*x^6 + 6368*x^7 + ...
A(A(x))^3 = x^3 + 6*x^4 + 36*x^5 + 236*x^6 + 1698*x^7 + ...
PROG
(PARI) {a(n) = my(A=x+x^2); for(i=1, n, A = serreverse(x - A^2 + A^3 +x*O(x^n))); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D}
{a(n) = my(A=x+x^2+x*O(x^n)); for(i=1, n, A= x + sum(m=1, n, Dx(m-1, A^(2*m)*(1 - A)^m )/m!) +x*O(x^n)); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Dec 30 2023
CROSSREFS
Sequence in context: A074535 A256337 A256330 * A005700 A220911 A088717
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 18 2011
STATUS
approved