login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348829
Numerator of relativistic sum w(2n) of the velocities v = 1/p^(2n) over all primes p, in units where the speed of light c = 1.
3
3, 1, 12, 59, 521, 872492, 415603, 471263387, 100453109125251, 249063001217323, 1206701295264057, 2340564635396243082668, 1836709980831869650909, 7917057291763619291770993, 6790679763108188972468718224386027, 497252110757159525928442098399943
OFFSET
1,1
COMMENTS
Generally, for a complex number s, w(s) = tanh(Sum_{p prime} arctanh(1/p^s)), assuming that Re(s) > 1.
Theorem. If Re(s) > 1, then w(s) = (1 - t(s))/(1 + t(s)) with t(s) = zeta(2s)/zeta(s)^2, where zeta(z) is the Riemann zeta function of z.
Proof. Einstein's formula w = (u + v)/(1 + uv) can be expanded as (1-w)/(1+w) = ((1-u)/(1+u))((1-v)/(1+v))... for any number of velocities u, v, ... Hence, by the Euler product, Product_{p prime} (1-1/p^s)/(1+1/p^s) = zeta(2s)/zeta(s)^2, qed. Note that the function f(x) = (1-x)/(1+x) is an involution.
If an integer s > 0 is even, then w(s) is rational (related to the Bernoulli numbers B_{s} and B_{2s}).
Conjecture: if an odd integer s > 1, then w(s) is irrational. Cf. W. Kohnen (link).
Note: Apery's constant zeta(3) = 1.202... is irrational.
LINKS
Winfried Kohnen, Transcendence conjectures about periods of modular forms and rational structures on spaces of modular forms, Proceedings of the Indian Academy of Sciences-Mathematical Sciences, Vol. 99, No. 3 (1989), pp. 231-233.
Wikipedia, Euler product.
FORMULA
a(n) = Numerator(tanh(Sum_{p prime} arctanh(1/p^(2n))).
a(n) = Numerator((zeta(2n)^2-zeta(4n))/(zeta(2n)^2+zeta(4n))).
a(n) = Numerator((1-t(2n))/(1+t(2n))), where t(2n) = A114362(n)/A114363(n).
If Re(s) > 1, then w(s) = f(f(w(s))) = (1-t(s))/(1+t(s)) and t(s) = f(f(t(s))) = (1-w(s))/(1+w(s)) = zeta(2s)/zeta(s)^2, where f(x) = (1-x)/(1+x). See my theorem and the note under my proof of this theorem. - Thomas Ordowski, Jan 03 2022
Conjecture: 0 < w(2n) - (1/2^(2n) + 1/3^(2n) + 1/5^(2n) + 1/7^(2n)) < 1/11^(2n) for every n > 0. Amiram Eldar confirmed my conjecture numerically up to n = 10^4. - Thomas Ordowski, Nov 13 2022
It can be proven that P(2n) - w(2n) ~ 1/12^(2n), where P(x) = Sum_{prime p} 1/p^x = 1/2^x + 1/3^x + 1/5^x + ... is the prime zeta function of real x > 1. - Thomas Ordowski, Nov 06 2024
EXAMPLE
w(2) = 3/7, w(4) = 1/13, w(6) = 12/703, ...
MATHEMATICA
r[s_] := Zeta[2*s]/Zeta[s]^2; w[s_] := (1 - r[s])/(1 + r[s]); Table[Numerator[w[2*n]], {n, 1, 15}] (* Amiram Eldar, Nov 01 2021 *)
CROSSREFS
The denominators are A348830.
See also A348131, A348132.
Sequence in context: A210587 A019232 A185697 * A321697 A263008 A016479
KEYWORD
nonn,frac
AUTHOR
Thomas Ordowski, Nov 01 2021
EXTENSIONS
More terms from Amiram Eldar, Nov 01 2021
STATUS
approved