login
A253300
Decimal expansion of integral_{x=0..1} x^sqrt(x) dx.
1
6, 5, 8, 5, 8, 2, 3, 5, 4, 1, 0, 9, 0, 9, 3, 5, 6, 5, 4, 6, 9, 6, 5, 6, 8, 5, 3, 4, 0, 3, 6, 4, 4, 1, 7, 0, 1, 5, 6, 4, 0, 5, 8, 9, 2, 7, 7, 3, 3, 6, 2, 4, 6, 1, 1, 3, 3, 7, 5, 8, 6, 2, 6, 4, 2, 6, 5, 4, 6, 7, 1, 7, 8, 8, 7, 9, 8, 7, 1, 9, 5, 7, 8, 8, 8, 1, 4, 1, 6, 4, 6, 8, 5, 9, 1, 1, 3, 9, 0, 2, 9, 8, 6, 4, 6
OFFSET
0,1
REFERENCES
Paul J. Nahin, Inside Interesting Integrals, Springer 2014, ISBN 978-1493912766.
LINKS
Paul J. Nahin, Inside interesting integrals, Undergrad. Lecture Notes in Physics, Springer (2020), (6.1.6)
FORMULA
Equals sum_{n >= 1} (-1)^(n + 1)*(2/(n + 1))^n.
EXAMPLE
0.6585823541090935654696568534036441701564...
MATHEMATICA
NIntegrate[x^Sqrt[x], {x, 0, 1}, WorkingPrecision -> 110] // RealDigits[#, 10, 105]& // First
PROG
(PARI) intnum(x=0, 1, x^sqrt(x)) \\ Michel Marcus, Dec 30 2014
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved