login
A194599
Units' digits of the nonzero hexagonal numbers.
1
1, 6, 5, 8, 5, 6, 1, 0, 3, 0, 1, 6, 5, 8, 5, 6, 1, 0, 3, 0, 1, 6, 5, 8, 5, 6, 1, 0, 3, 0, 1, 6, 5, 8, 5, 6, 1, 0, 3, 0, 1, 6, 5, 8, 5, 6, 1, 0, 3, 0, 1, 6, 5, 8, 5, 6, 1, 0, 3, 0, 1, 6, 5, 8, 5, 6, 1, 0, 3, 0, 1, 6, 5, 8, 5, 6, 1, 0, 3, 0, 1, 6, 5, 8, 5, 6, 1, 0, 3, 0, 1, 6, 5, 8, 5, 6, 1, 0, 3, 0
OFFSET
1,2
COMMENTS
This is a periodic sequence with period 10 and cycle 1, 6, 5, 8, 5, 6, 1, 0, 3, 0.
As the sum of the terms contained in each cycle is 35 they also satisfy the ninth-order inhomogeneous recurrence a(n)=35-a(n-1)-a(n-2)-a(n-3)-a(n-4)-a(n-5)-a(n-6)-a(n-7)-a(n-8)-a(n-9).
FORMULA
a(n) = a(n-10).
a(n) = (n*(2*n-1)) mod 10.
G.f. -x*(1+6*x+5*x^2+8*x^3+5*x^4+6*x^5+x^6+3*x^8) / ( (x-1)*(1+x)*(x^4+x^3+x^2+x+1)*(x^4-x^3+x^2-x+1) ). - R. J. Mathar, Aug 30 2011
a(n) = A010879(A000384(n)). - Michel Marcus, Aug 10 2015
EXAMPLE
The seventh nonzero hexagonal number is A000384(7)=91, which has units' digit 1. Hence a(7)=1.
MATHEMATICA
Mod[# (2#-1), 10] &/@Range[100]
Mod[PolygonalNumber[6, Range[100]], 10] (* Harvey P. Dale, Oct 04 2024 *)
CROSSREFS
Sequence in context: A225113 A329247 A133618 * A253300 A339253 A335165
KEYWORD
nonn,easy,base
AUTHOR
Ant King, Aug 30 2011
STATUS
approved