login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194597
Digital roots of the nonzero hexagonal numbers.
1
1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3
OFFSET
1,2
COMMENTS
This is a periodic sequence with period 9 and cycle 1,6,6,1,9,3,1,3,9 - which are also the coefficients of x in the numerator of the generating function.
a(n) = A010888(A000384(n)). - Reinhard Zumkeller, Jan 09 2013
FORMULA
a(n) = a(n-9), and as the sum of the terms contained in each cycle is 39 they also satisfy the eighth-order inhomogeneous recurrence a(n) = 39 - a(n-1) - a(n-2) - a(n-3) - a(n-4) - a(n-5) - a(n-6) - a(n-7) - a(n-8).
a(n) = 2 + cos(2/9*(n-5)*Pi) + cos(4/9*(n-5)*Pi) + cos(2/3*(n-5)*Pi) + cos(8/9*(n-5)*Pi) + cos(4/3*(n-5)*Pi) + cos(14/9*(n-5)*Pi) + cos(16/9*(n-5)*Pi) + cos((2 n Pi)/9) + cos((4 n Pi)/9) + cos((2 n Pi)/3) + cos((8 n Pi)/9) + cos((10 n Pi)/9) + cos((4 n Pi)/3) + cos((14 n Pi)/9) + cos((16 n Pi)/9) + cos(2/9 (2+5 n) Pi) + (8n + 5n^2 + 7n^3 + n^5 + n^7 + 6n^8) mod 9.
G.f.: x(1+6x+6x^2+x^3+9x^4+3x^5+x^6+3x^7+9x^8)/((1-x)(1+x+x^2)(1+x^3+x^6)).
EXAMPLE
The sixth nonzero hexagonal number is A000384(6)=66. As 6+6=12 and 1+2=3, this has digital root 3 and so a(6)=3.
MATHEMATICA
DigitalRoot[n_]:=FixedPoint[Plus@@IntegerDigits[#]&, n]; DigitalRoot[ # (2#-1)]&/@Range[63]
CoefficientList[Series[(1 + 6 x + 6 x^2 + x^3 + 9 x^4 + 3 x^5 + x^6 + 3 x^7 + 9 x^8)/((1 - x) (1 + x + x^2) (1 + x^3 + x^6)), {x, 0, 100}], x] (* Vincenzo Librandi, Aug 11 2015 *)
PadRight[{}, 120, {1, 6, 6, 1, 9, 3, 1, 3, 9}] (* Harvey P. Dale, Oct 02 2018 *)
PROG
(Haskell)
a194597 n = [1, 6, 6, 1, 9, 3, 1, 3, 9] !! a010878 (n-1)
-- Reinhard Zumkeller, Jan 09 2013
(Magma) &cat[ [1, 6, 6, 1, 9, 3, 1, 3, 9]: k in [1..10] ]; // Vincenzo Librandi, Aug 11 2015
CROSSREFS
Cf. A000384.
Sequence in context: A201672 A200299 A254134 * A105817 A093313 A098267
KEYWORD
nonn,easy,base
AUTHOR
Ant King, Aug 30 2011
STATUS
approved