login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200299 Decimal expansion of least x satisfying 4*x^2 - 3*cos(x) = sin(x), negated. 3
6, 6, 1, 8, 2, 6, 1, 4, 1, 1, 8, 8, 8, 5, 0, 9, 9, 3, 7, 4, 3, 0, 2, 6, 1, 2, 3, 3, 5, 7, 0, 9, 4, 9, 8, 9, 9, 7, 5, 1, 0, 6, 5, 0, 4, 6, 2, 1, 0, 8, 6, 4, 2, 4, 6, 4, 5, 8, 2, 2, 2, 9, 2, 0, 0, 8, 7, 1, 3, 6, 7, 6, 2, 5, 6, 7, 4, 1, 1, 2, 3, 6, 0, 8, 5, 7, 6, 5, 1, 0, 0, 8, 9, 0, 2, 7, 5, 3, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A199949 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

EXAMPLE

least x: -0.661826141188850993743026123357094...

greatest x: 0.8308503276605474027666209935665...

MATHEMATICA

a = 4; b = -3; c = 1;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -.67, -.66}, WorkingPrecision -> 110]

RealDigits[r]   (* A200299 *)

r = x /. FindRoot[f[x] == g[x], {x, .83, .84}, WorkingPrecision -> 110]

RealDigits[r]   (* A200300 *)

PROG

(PARI) a=4; b=-3; c=1; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 08 2018

CROSSREFS

Cf. A199949.

Sequence in context: A073012 A102522 A201672 * A254134 A194597 A105817

Adjacent sequences:  A200296 A200297 A200298 * A200300 A200301 A200302

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 15 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 30 12:39 EDT 2021. Contains 346359 sequences. (Running on oeis4.)