The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A073012 Decimal expansion of Robbins constant. 8
 6, 6, 1, 7, 0, 7, 1, 8, 2, 2, 6, 7, 1, 7, 6, 2, 3, 5, 1, 5, 5, 8, 3, 1, 1, 3, 3, 2, 4, 8, 4, 1, 3, 5, 8, 1, 7, 4, 6, 4, 0, 0, 1, 3, 5, 7, 9, 0, 9, 5, 3, 6, 0, 4, 8, 0, 8, 9, 4, 4, 2, 2, 9, 4, 7, 9, 5, 8, 4, 6, 4, 6, 1, 3, 8, 5, 9, 7, 6, 3, 1, 3, 0, 6, 6, 5, 2, 4, 8, 0, 7, 6, 8, 1, 0, 7, 1, 2, 0, 1, 5, 1, 7, 0, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The average distance between two points chosen at random inside a unit cube. This constant was named after the American mathematician David Peter Robbins (1942 - 2003). - Amiram Eldar, Aug 25 2020 REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 479. Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 693. Francois Le Lionnais, Les nombres remarquables, Paris: Hermann, 1983. See p. 30. LINKS G. C. Greubel, Table of n, a(n) for n = 0..5000 Simon Plouffe, The Robbins constant, in Miscellaneous Mathematical Constants, p. 173. David P. Robbins, Problem E2629, The American Mathematical Monthly, Vol. 84, No. 1 (1977), p. 57, Theodore S. Bolis, Solution to problem E2629: Average distance between two points in a box, also solved by the proposer and by Günter Bach and Frank Piefke, ibid., Vol. 85, No. 4 (1978), pp. 277-278. Eric Weisstein's World of Mathematics, Cube Line Picking. Eric Weisstein's World of Mathematics, Hypercube Line Picking. Eric Weisstein's World of Mathematics, Robbins Constant. FORMULA 4/105 + (17/105) * sqrt(2) - (2/35) * sqrt(3) + (1/5) * log(1+sqrt(2)) + (2/5) * log(2+sqrt(3)) - (1/15) * Pi. - Eric W. Weisstein, Mar 02 2005 EXAMPLE 0.66170718226717623515583113324841358174640013579095... MATHEMATICA RealDigits[ N[4/105 + 17/105*Sqrt[2] - 2/35*Sqrt[3] + 1/5*Log[1 + Sqrt[2]] + 2/5*Log[2 + Sqrt[3]] - 1/15*Pi, 110]] [[1]] PROG (PARI) (4 + 17*sqrt(2) - 6*sqrt(3) + 21*log(1 + sqrt(2)) + 42*log(2 + sqrt(3)) - 7*Pi)/105 \\ G. C. Greubel, Jan 11 2017 CROSSREFS Cf. A091505. Sequence in context: A153605 A247447 A112302 * A102522 A201672 A200299 Adjacent sequences: A073009 A073010 A073011 * A073013 A073014 A073015 KEYWORD cons,nonn AUTHOR Robert G. Wilson v, Aug 03 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 1 09:50 EDT 2023. Contains 361688 sequences. (Running on oeis4.)