login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200300 Decimal expansion of greatest x satisfying 4*x^2 - 3*cos(x) = sin(x). 3
8, 3, 0, 8, 5, 0, 3, 2, 7, 6, 6, 0, 5, 4, 7, 4, 0, 2, 7, 6, 6, 6, 2, 0, 9, 9, 3, 5, 6, 6, 5, 9, 7, 2, 8, 9, 7, 8, 5, 3, 0, 3, 0, 1, 5, 7, 3, 0, 2, 8, 1, 4, 8, 0, 7, 4, 7, 1, 6, 5, 1, 2, 1, 8, 3, 5, 0, 0, 1, 8, 5, 4, 8, 1, 3, 3, 8, 1, 5, 2, 2, 3, 2, 5, 4, 0, 6, 8, 6, 3, 2, 0, 8, 3, 6, 2, 8, 0, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A199949 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

EXAMPLE

least x: -0.661826141188850993743026123357094...

greatest x: 0.8308503276605474027666209935665...

MATHEMATICA

a = 4; b = -3; c = 1;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -.67, -.66}, WorkingPrecision -> 110]

RealDigits[r]   (* A200299 *)

r = x /. FindRoot[f[x] == g[x], {x, .83, .84}, WorkingPrecision -> 110]

RealDigits[r]   (* A200300 *)

PROG

(PARI) a=4; b=-3; c=1; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 08 2018

CROSSREFS

Cf. A199949.

Sequence in context: A154166 A010521 A200025 * A268440 A137433 A318409

Adjacent sequences:  A200297 A200298 A200299 * A200301 A200302 A200303

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 15 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 10:24 EDT 2019. Contains 328317 sequences. (Running on oeis4.)