login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200301 Decimal expansion of least x satisfying 4*x^2 - 3*cos(x) = 3*sin(x), negated. 2
5, 2, 3, 7, 7, 4, 1, 5, 6, 7, 5, 3, 2, 5, 5, 7, 2, 1, 7, 1, 7, 8, 4, 0, 4, 9, 6, 7, 3, 9, 4, 4, 5, 2, 8, 5, 3, 9, 0, 6, 0, 2, 4, 7, 1, 1, 0, 3, 1, 6, 0, 9, 9, 7, 1, 6, 8, 4, 8, 7, 8, 1, 5, 3, 9, 7, 3, 9, 2, 9, 3, 2, 3, 9, 5, 9, 6, 2, 6, 5, 2, 2, 3, 5, 6, 8, 4, 2, 6, 0, 2, 5, 3, 5, 8, 7, 5, 3, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A199949 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

EXAMPLE

least x: -0.52377415675325572171784049673944...

greatest x: 1.01614395672355873379945590129...

MATHEMATICA

a = 4; b = -3; c = 3;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -.54, -.51}, WorkingPrecision -> 110]

RealDigits[r]   (* A200297 *)

r = x /. FindRoot[f[x] == g[x], {x, 1, 1.03}, WorkingPrecision -> 110]

RealDigits[r]   (* A200298 *)

PROG

(PARI) a=4; b=-3; c=3; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 08 2018

CROSSREFS

Cf. A199949.

Sequence in context: A063572 A205294 A131567 * A114746 A133746 A176319

Adjacent sequences:  A200298 A200299 A200300 * A200302 A200303 A200304

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 15 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 31 08:06 EDT 2021. Contains 346369 sequences. (Running on oeis4.)