login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353617
Decimal expansion of the asymptotic median of the abundancy indices of the positive integers.
2
OFFSET
1,2
COMMENTS
The abundancy index of a number k is sigma(k)/k = A017665(k)/A017666(k), where sigma is the sum-of-divisors function (A000203).
Davenport (1933) proved that sigma(k)/k possesses a continuous distribution function. Therefore, it has an asymptotic median.
The asymptotic mean of the abundancy indices is Pi^2/6 = 1.64493... (A013661).
Mitsuo Kobayashi (unpublished, 2018) found that the median is in the interval (1.523812, 1.5238175) (see the MathOverflow link).
REFERENCES
Harold Davenport, Über numeri abundantes, Sitzungsberichte der Preußischen Akademie der Wissenschaften, phys.-math. Klasse, No. 6 (1933), pp. 830-837.
LINKS
EXAMPLE
1.52381...
KEYWORD
nonn,cons,more
AUTHOR
Amiram Eldar, Apr 30 2022
STATUS
approved