login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137433
Coefficients of A000930 expansion similar to that given for Fibonacci numbers in Roman's Umbral Calculus.
0
1, 0, 1, 0, 1, 1, 0, 8, 3, 1, 0, 30, 35, 6, 1, 0, 144, 230, 95, 10, 1, 0, 1200, 1954, 945, 205, 15, 1, 0, 10800, 19824, 11494, 2835, 385, 21, 1, 0, 105840, 216012, 149212, 45409, 7000, 658, 28, 1, 0, 1249920, 2692080, 2055500, 740124, 140889, 15120, 1050, 36, 1
OFFSET
1,8
COMMENTS
Row sums:
{1, 1, 2, 12, 72, 480, 4320, 45360, 524160, 6894720, 101606400}
Row_sum(n)/n!=A000930(n)
REFERENCES
Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 149-150
FORMULA
Coefficients expansion of p(x,n) in f(x,t)=1/(1-t-t^3)^x=Sum[p(x,n)*t^n/n!m{n,1,Infinity}]
EXAMPLE
{1},
{0, 1},
{0, 1, 1},
{0, 8, 3, 1},
{0, 30, 35, 6, 1},
{0, 144, 230, 95, 10, 1},
{0, 1200, 1954, 945, 205, 15, 1},
{0, 10800, 19824, 11494, 2835, 385, 21, 1},
{0, 105840, 216012, 149212, 45409, 7000, 658, 28, 1},
{0, 1249920, 2692080, 2055500, 740124, 140889, 15120, 1050, 36, 1},
{0, 16692480, 37802736, 31266540, 12628160, 2814525, 370713, 29610, 1590, 45, 1}
MATHEMATICA
Clear[p, g]; p[t_] = 1/(1 - t - t^3)^x; Table[ ExpandAll[n!SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[n!* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a]
CROSSREFS
Sequence in context: A372585 A200300 A268440 * A318409 A119278 A070064
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Apr 17 2008
STATUS
approved