Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #2 Mar 30 2012 17:34:26
%S 1,0,1,0,1,1,0,8,3,1,0,30,35,6,1,0,144,230,95,10,1,0,1200,1954,945,
%T 205,15,1,0,10800,19824,11494,2835,385,21,1,0,105840,216012,149212,
%U 45409,7000,658,28,1,0,1249920,2692080,2055500,740124,140889,15120,1050,36,1
%N Coefficients of A000930 expansion similar to that given for Fibonacci numbers in Roman's Umbral Calculus.
%C Row sums:
%C {1, 1, 2, 12, 72, 480, 4320, 45360, 524160, 6894720, 101606400}
%C Row_sum(n)/n!=A000930(n)
%D Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 149-150
%F Coefficients expansion of p(x,n) in f(x,t)=1/(1-t-t^3)^x=Sum[p(x,n)*t^n/n!m{n,1,Infinity}]
%e {1},
%e {0, 1},
%e {0, 1, 1},
%e {0, 8, 3, 1},
%e {0, 30, 35, 6, 1},
%e {0, 144, 230, 95, 10, 1},
%e {0, 1200, 1954, 945, 205, 15, 1},
%e {0, 10800, 19824, 11494, 2835, 385, 21, 1},
%e {0, 105840, 216012, 149212, 45409, 7000, 658, 28, 1},
%e {0, 1249920, 2692080, 2055500, 740124, 140889, 15120, 1050, 36, 1},
%e {0, 16692480, 37802736, 31266540, 12628160, 2814525, 370713, 29610, 1590, 45, 1}
%t Clear[p, g]; p[t_] = 1/(1 - t - t^3)^x; Table[ ExpandAll[n!SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[n!* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a]
%Y Cf. A000045, A000930.
%K nonn,tabl,uned
%O 1,8
%A _Roger L. Bagula_, Apr 17 2008