login
A225113
Decimal expansion of Integral_{x=0..1} arcsin(x)^2/x dx.
0
6, 5, 8, 4, 7, 2, 3, 2, 5, 6, 9, 9, 6, 3, 4, 1, 3, 6, 4, 8, 7, 0, 9, 8, 8, 9, 7, 1, 6, 6, 0, 0, 5, 2, 7, 5, 9, 0, 5, 5, 8, 1, 7, 5, 6, 2, 4, 9, 0, 4, 1, 8, 5, 7, 2, 6, 2, 7, 9, 5, 3, 5, 1, 2, 0, 5, 1, 7, 0, 8, 7, 9, 6, 6, 7, 6, 6, 8, 2, 2, 7, 7, 6, 3, 3, 3, 8, 6, 3, 7, 0, 6, 3, 1, 2, 9, 9, 9, 4, 5
OFFSET
0,1
REFERENCES
George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 122.
LINKS
Chenli Li, Wenchang Chu, Improper integrals involving powers of Inverse Trigonometric and hyperbolic Functions, Mathematics 10 (16) (2022) 2980
D. Cvijovic, H. M. Srivastava, Evaluations of some classes of the trigonometric moment intgrals, J. Math. Anal. Applic. 351 (2009) 244-256, example set 1.
J. C. Tanner, The Proportion of Quadrilaterals Formed by Random Lines in a Plane, Journal of Applied Probability, Vol. 20, No. 2 (Jun., 1983), pp. 400-404.
J. C. Tanner, Polygons Formed by Random Lines in a Plane: Some Further Results, Journal of Applied Probability, Vol. 20, No. 4 (Dec., 1983), p. 778
FORMULA
Equals 1/8*(Pi^2*log(4) - 7*zeta(3)).
Also equals Sum_{n>=1} 4^(n-1)/(n^3*binomial(2*n, n)).
Also equals 1/2*hypergeometric4F3([1, 1, 1, 1], [3/2, 2, 2], 1).
Also equals Integral_{x=0..Pi/2} x^2*cot(x) dx. - Michel Marcus, Aug 29 2015
EXAMPLE
0.65847232569963413648709889716600527590558175624904185726279535120517...
MATHEMATICA
1/8*(Pi^2*Log[4] - 7*Zeta[3]) // RealDigits[#, 10, 100]& // First
PROG
(PARI) (Pi^2*log(4) - 7*zeta(3))/8 \\ Michel Marcus, Sep 04 2015
CROSSREFS
Cf. A002117 (zeta(3)).
Sequence in context: A242759 A021607 A298172 * A329247 A133618 A194599
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved