login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225116
a(n) = 3^n*A_{n, 1/3}(-1) where A_{n, k}(x) are the generalized Eulerian polynomials.
3
1, 5, 24, 110, 480, 2000, 8064, 32240, 130560, 531200, 2095104, 8030720, 33546240, 156569600, 536838144, 243660800, 8589803520, 244224819200, 137438429184, -28539130347520, 2199021158400, 4960294141952000, 35184363700224, -1015283149035274240, 562949919866880
OFFSET
0,2
FORMULA
a(n) = 2^(1+n)*(3^n+sum_{j=0..n}(binomial(n,j)*Li_{-j}(-1)*3^(n-j))).
a(n) = 2^(t+1)*(zeta(-t)*(1-2^(t+1))+(2^t-1)). - Peter Luschny, Jul 20 2013
MAPLE
EulerianPolynomial := proc(n, k, x) local j; if x = 1 then k^n*n! else (1-x)^(1+n)*(1+add(binomial(n, j)* polylog(-j, x)*k^j, j = 0..n)) fi end:
A225116 := n -> 3^n*EulerianPolynomial(n, 1/3, -1);
seq(round(evalf(A225116(i), 24)), i = 0..24);
MATHEMATICA
Table[2^(t+1)*(Zeta[-t]*(1-2^(t+1))+(2^t-1)), {t, 0, 24}] (* Peter Luschny, Jul 20 2013 *)
Table[EulerE[n, 3] 2^n , {n, 0, 20}] (* Vladimir Reshetnikov, Oct 21 2015 *)
PROG
(Sage)
from mpmath import mp, polylog
mp.dps = 32; mp.pretty = True
def A225116(n): return 2^(1+n)*(3^n+add(binomial(n, j)*polylog(-j, -1) *3^(n-j) for j in (0..n)))
[int(A225116(n)) for n in (0..24)]
CROSSREFS
Cf. A155585(n) = 1^n*A_{n, 1/1}(-1), A119881(n) = 2^n*A_{n, 1/2}(-1).
Sequence in context: A000953 A183934 A171310 * A367819 A296770 A370035
KEYWORD
sign
AUTHOR
Peter Luschny, Apr 29 2013
STATUS
approved