Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Mar 19 2020 16:38:13
%S 1,5,24,110,480,2000,8064,32240,130560,531200,2095104,8030720,
%T 33546240,156569600,536838144,243660800,8589803520,244224819200,
%U 137438429184,-28539130347520,2199021158400,4960294141952000,35184363700224,-1015283149035274240,562949919866880
%N a(n) = 3^n*A_{n, 1/3}(-1) where A_{n, k}(x) are the generalized Eulerian polynomials.
%H Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/EulerianPolynomialsGeneralized">Generalized Eulerian polynomials</a>.
%F a(n) = 2^(1+n)*(3^n+sum_{j=0..n}(binomial(n,j)*Li_{-j}(-1)*3^(n-j))).
%F a(n) = 2^(t+1)*(zeta(-t)*(1-2^(t+1))+(2^t-1)). - _Peter Luschny_, Jul 20 2013
%p EulerianPolynomial := proc(n,k,x) local j; if x = 1 then k^n*n! else (1-x)^(1+n)*(1+add(binomial(n,j)* polylog(-j,x)*k^j, j = 0..n)) fi end:
%p A225116 := n -> 3^n*EulerianPolynomial(n, 1/3, -1);
%p seq(round(evalf(A225116(i), 24)), i = 0..24);
%t Table[2^(t+1)*(Zeta[-t]*(1-2^(t+1))+(2^t-1)), {t,0,24}] (* _Peter Luschny_, Jul 20 2013 *)
%t Table[EulerE[n, 3] 2^n , {n, 0, 20}] (* _Vladimir Reshetnikov_, Oct 21 2015 *)
%o (Sage)
%o from mpmath import mp, polylog
%o mp.dps = 32; mp.pretty = True
%o def A225116(n): return 2^(1+n)*(3^n+add(binomial(n,j)*polylog(-j,-1) *3^(n-j) for j in (0..n)))
%o [int(A225116(n)) for n in (0..24)]
%Y Cf. A155585(n) = 1^n*A_{n, 1/1}(-1), A119881(n) = 2^n*A_{n, 1/2}(-1).
%K sign
%O 0,2
%A _Peter Luschny_, Apr 29 2013