login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296770
Row sums of A050158.
3
1, 5, 24, 111, 500, 2210, 9632, 41531, 177564, 754014, 3184016, 13382710, 56026984, 233765636, 972504704, 4035441491, 16707488684, 69033916166, 284733161264, 1172510645666, 4821324991064, 19799091571676, 81208982686784, 332726301861086, 1361862906980120
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} (binomial(2*n+1, n+1) - binomial(2*n+1, n-k-1)).
a(n) = 4^n*((2*(n + 2)*Gamma(n + 3/2))/(sqrt(Pi)*Gamma(n + 2)) - 1).
a(n) = (n/2+1)*binomial(2*(n+1), n+1) - 4^n.
a(n) ~ 4^n*(2*sqrt(n/Pi) - 1).
a(n) = A002457(n) - A008549(n).
MAPLE
A296770 := n -> add(binomial(2*n+1, n+1) - binomial(2*n+1, n-k-1), k=0..n):
seq(A296770(n), n=0..24);
MATHEMATICA
a[n_] := 4^n ((2 (2 + n) Gamma[3/2 + n])/(Sqrt[Pi] Gamma[2 + n]) - 1);
Table[a[n], {n, 0, 24}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Dec 22 2017
STATUS
approved