OFFSET
0,2
LINKS
Robert Israel, Table of n, a(n) for n = 0..1657
FORMULA
a(n) = Sum_{k=0..n} (binomial(2*n, n) - binomial(2*n, n+k+1)).
a(n) = 2^(2*n-1)*(((n-1/2)!*(2*n+3))/(sqrt(Pi)*n!) - 1).
a(n) ~ 4^n*(sqrt(n/Pi) - 1/2).
From Robert Israel, Dec 21 2017: (Start)
a(n) = (n+3/2)*binomial(2*n,n) - 2^(2*n-1).
G.f.: (3/2-4*x)*(1-4*x)^(-3/2) - (1/2)*(1-4*x)^(-1).
64*(n+1)*(2*n+1)*a(n)-8*(2*n+3)*(5*n+4)*a(n+1)+2*(n+2)*(8*n+11)*a(n+2)-(n+3)*(n+2)*a(n+3)=0. (End)
MAPLE
MATHEMATICA
a[n_] := 4^n ((n - 1/2)! (2 n + 3)/(2 Sqrt[Pi] n!) - 1/2);
Table[a[n], {n, 0, 24}]
PROG
(PARI) a(n) = sum(k=0, n, binomial(2*n, n) - binomial(2*n, n+k+1)) \\ Iain Fox, Dec 21 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Dec 21 2017
STATUS
approved