login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005349 Niven (or Harshad, or harshad) numbers: numbers that are divisible by the sum of their digits.
(Formerly M0481)
306
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 45, 48, 50, 54, 60, 63, 70, 72, 80, 81, 84, 90, 100, 102, 108, 110, 111, 112, 114, 117, 120, 126, 132, 133, 135, 140, 144, 150, 152, 153, 156, 162, 171, 180, 190, 192, 195, 198, 200, 201, 204 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Both spellings, "Harshad" or "harshad", are in use. It is a Sanskrit word, and in Sanskrit there is no distinction between upper- and lower-case letters. - N. J. A. Sloane, Jan 04 2022
z-Niven numbers are numbers n which are divisible by (A*s(n) + B) where A, B are integers and s(n) is sum of digits of n. Niven numbers have A = 1, B = 0. - Ctibor O. Zizka, Feb 23 2008
A070635(a(n)) = 0. A038186 is a subsequence. - Reinhard Zumkeller, Mar 10 2008
A049445 is a subsequence of this sequence. - Ctibor O. Zizka, Sep 06 2010
Complement of A065877; A188641(a(n)) = 1; A070635(a(n)) = 0. - Reinhard Zumkeller, Apr 07 2011
A001101, the Moran numbers, are a subsequence. - Reinhard Zumkeller, Jun 16 2011
A140866 gives the number of terms <= 10^k. - Robert G. Wilson v, Oct 16 2012
The asymptotic density of this sequence is 0 (Cooper and Kennedy, 1984). - Amiram Eldar, Jul 10 2020
REFERENCES
Paul Dahlenberg and T. Edgar, Consecutive factorial base Niven numbers, Fib. Q., 56:2 (2018), 163-166.
R. E. Kennedy and C. N. Cooper, On the natural density of the Niven numbers, Abstract 816-11-219, Abstracts Amer. Math. Soc., 6 (1985), 17.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 171.
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..11872 (all a(n) <= 100000)
C. N. Cooper and R. E. Kennedy, Chebyshev's inequality and natural density, Amer. Math. Monthly 96 (1989), no. 2, 118-124.
Paul Dalenberg and Tom Edgar, Consecutive factorial base Niven numbers, Fibonacci Quart. (2018) Vol. 56, No. 2, 163-166.
Jean-Marie De Koninck and Nicolas Doyon, Large and Small Gaps Between Consecutive Niven Numbers, J. Integer Seqs., Vol. 6, 2003, Article 03.2.5.
R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990), no. 1, 3-20.
R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990), no. 1, 3-20. [Annotated scanned copy]
R. E. Kennedy and C. N. Cooper, On the natural density of the Niven numbers, The College Mathematics Journal, Vol. 15, No. 4 (Sep., 1984), pp. 309-312.
Terry Trotter, Niven Numbers for Fun and Profit [archived page]
Gérard Villemin, Nombres de Harshad (French)
Elaine E. Visitacion, Renalyn T. Boado, Mary Ann V. Doria, and Eduard M. Albay, On Harshad Number, DMMMSU-CAS Science Monitor (2016-2017) Vol. 15 No. 2, 134-138. [archived]
Eric Weisstein's World of Mathematics, Digit and Harshad Numbers
Wikipedia, Harshad number
EXAMPLE
195 is a term of the sequence because it is divisible by 15 (= 1 + 9 + 5).
MAPLE
s:=proc(n) local N:N:=convert(n, base, 10):sum(N[j], j=1..nops(N)) end:p:=proc(n) if floor(n/s(n))=n/s(n) then n else fi end: seq(p(n), n=1..210); # Emeric Deutsch
MATHEMATICA
harshadQ[n_] := Mod[n, Plus @@ IntegerDigits@ n] == 0; Select[ Range[1000], harshadQ] (* Alonso del Arte, Aug 04 2004 and modified by Robert G. Wilson v, Oct 16 2012 *)
Select[Range[300], Divisible[#, Total[IntegerDigits[#]]]&] (* Harvey P. Dale, Sep 07 2015 *)
PROG
(Haskell)
a005349 n = a005349_list !! (n-1)
a005349_list = filter ((== 0) . a070635) [1..]
-- Reinhard Zumkeller, Aug 17 2011, Apr 07 2011
(Magma) [n: n in [1..250] | n mod &+Intseq(n) eq 0]; // Bruno Berselli, May 28 2011
(Magma) [n: n in [1..250] | IsIntegral(n/&+Intseq(n))]; // Bruno Berselli, Feb 09 2016
(PARI) is(n)=n%sumdigits(n)==0 \\ Charles R Greathouse IV, Oct 16 2012
(Python)
A005349 = [n for n in range(1, 10**6) if not n % sum([int(d) for d in str(n)])] # Chai Wah Wu, Aug 22 2014
(Sage)
[n for n in (1..10^4) if sum(n.digits(base=10)).divides(n)] # Freddy Barrera, Jul 27 2018
(GAP) Filtered([1..230], n-> n mod List(List([1..n], ListOfDigits), Sum)[n]=0); # Muniru A Asiru
CROSSREFS
Cf. A001102 (a subsequence).
Cf. A118363 (for factorial-base analog).
Cf. A330927, A154701, A141769, A330928, A330929, A330930 (start of runs of 2, 3, ..., 7 consecutive Niven numbers).
Sequence in context: A064807 A235591 A007603 * A234474 A285829 A225780
KEYWORD
nonn,base,nice,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 12:42 EDT 2023. Contains 365579 sequences. (Running on oeis4.)