|
|
A005349
|
|
Niven (or Harshad, or harshad) numbers: numbers that are divisible by the sum of their digits.
(Formerly M0481)
|
|
306
|
|
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 45, 48, 50, 54, 60, 63, 70, 72, 80, 81, 84, 90, 100, 102, 108, 110, 111, 112, 114, 117, 120, 126, 132, 133, 135, 140, 144, 150, 152, 153, 156, 162, 171, 180, 190, 192, 195, 198, 200, 201, 204
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Both spellings, "Harshad" or "harshad", are in use. It is a Sanskrit word, and in Sanskrit there is no distinction between upper- and lower-case letters. - N. J. A. Sloane, Jan 04 2022
z-Niven numbers are numbers n which are divisible by (A*s(n) + B) where A, B are integers and s(n) is sum of digits of n. Niven numbers have A = 1, B = 0. - Ctibor O. Zizka, Feb 23 2008
The asymptotic density of this sequence is 0 (Cooper and Kennedy, 1984). - Amiram Eldar, Jul 10 2020
|
|
REFERENCES
|
Paul Dahlenberg and T. Edgar, Consecutive factorial base Niven numbers, Fib. Q., 56:2 (2018), 163-166.
R. E. Kennedy and C. N. Cooper, On the natural density of the Niven numbers, Abstract 816-11-219, Abstracts Amer. Math. Soc., 6 (1985), 17.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 171.
|
|
LINKS
|
Elaine E. Visitacion, Renalyn T. Boado, Mary Ann V. Doria, and Eduard M. Albay, On Harshad Number, DMMMSU-CAS Science Monitor (2016-2017) Vol. 15 No. 2, 134-138. [archived]
|
|
EXAMPLE
|
195 is a term of the sequence because it is divisible by 15 (= 1 + 9 + 5).
|
|
MAPLE
|
s:=proc(n) local N:N:=convert(n, base, 10):sum(N[j], j=1..nops(N)) end:p:=proc(n) if floor(n/s(n))=n/s(n) then n else fi end: seq(p(n), n=1..210); # Emeric Deutsch
|
|
MATHEMATICA
|
harshadQ[n_] := Mod[n, Plus @@ IntegerDigits@ n] == 0; Select[ Range[1000], harshadQ] (* Alonso del Arte, Aug 04 2004 and modified by Robert G. Wilson v, Oct 16 2012 *)
Select[Range[300], Divisible[#, Total[IntegerDigits[#]]]&] (* Harvey P. Dale, Sep 07 2015 *)
|
|
PROG
|
(Haskell)
a005349 n = a005349_list !! (n-1)
a005349_list = filter ((== 0) . a070635) [1..]
(Magma) [n: n in [1..250] | n mod &+Intseq(n) eq 0]; // Bruno Berselli, May 28 2011
(Magma) [n: n in [1..250] | IsIntegral(n/&+Intseq(n))]; // Bruno Berselli, Feb 09 2016
(Python)
A005349 = [n for n in range(1, 10**6) if not n % sum([int(d) for d in str(n)])] # Chai Wah Wu, Aug 22 2014
(Sage)
[n for n in (1..10^4) if sum(n.digits(base=10)).divides(n)] # Freddy Barrera, Jul 27 2018
(GAP) Filtered([1..230], n-> n mod List(List([1..n], ListOfDigits), Sum)[n]=0); # Muniru A Asiru
|
|
CROSSREFS
|
Cf. A001101, A007602, A007953, A028834, A038186, A049445, A052018, A052019, A052020, A052021, A052022, A065877, A070635, A113315, A188641.
Cf. A118363 (for factorial-base analog).
|
|
KEYWORD
|
nonn,base,nice,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|