login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005351
Base -2 representation for n regarded as base 2, then evaluated.
(Formerly M4059)
14
0, 1, 6, 7, 4, 5, 26, 27, 24, 25, 30, 31, 28, 29, 18, 19, 16, 17, 22, 23, 20, 21, 106, 107, 104, 105, 110, 111, 108, 109, 98, 99, 96, 97, 102, 103, 100, 101, 122, 123, 120, 121, 126, 127, 124, 125, 114, 115, 112, 113, 118, 119, 116, 117, 74, 75, 72, 73, 78, 79, 76
OFFSET
0,3
COMMENTS
a(n) = n when n is a power of 4. This is because the even-indexed powers of 2 are the same as the even-indexed powers of -2. - Alonso del Arte, Feb 09 2012
a(n) = n if n is a sum of distinct powers of 4. - Michael Somos, Aug 27 2012
Write n = Sum_{i in b(n)} (-2)^(i - 1), which uniquely determines the set of positive integers b(n). Then a(n) = Sum_{i in b(n)} 2^(i - 1). For example, a(7) = 27 because 7 = (-2)^0 + (-2)^1 + (-2)^3 + (-2)^4 and 27 = 2^0 + 2^1 + 2^3 + 2^4. - Gus Wiseman, Jul 26 2019
REFERENCES
M. Gardner, Knotted Doughnuts and Other Mathematical Entertainments. Freeman, NY, 1986, p. 101.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Eric Weisstein's World of Mathematics, Negabinary
Wikipedia, Negative base
FORMULA
a(4n+2) = 4a(n+1)+2, a(4n+3) = 4a(n+1)+3, a(4n+4) = 4a(n+1), a(4n+5) = 4a(n+1)+1, n>-2, a(1)=1. - Ralf Stephan, Apr 06 2004
EXAMPLE
2 = 4+(-2)+0 = 110 => 6, 3 = 4+(-2)+1 = 111 => 7, ..., 6 = (16)+(-8)+0+(-2)+0 = 11010 => 26.
MATHEMATICA
f[n_] := Module[{t = 2(4^Floor[ Log[4, Abs[n] + 1] + 2] - 1)/3}, BitXor[n + t, t]]; Table[ f[n]], {n, 0, 60}] (* Robert G. Wilson v, Jan 24 2005 *)
PROG
(Haskell)
a005351 0 = 0
a005351 n = a005351 n' * 2 + m where
(n', m) = if r < 0 then (q + 1, r + 2) else (q, r)
where (q, r) = quotRem n (negate 2)
-- Reinhard Zumkeller, Jul 07 2012
(Python)
def A005351(n):
s, q = '', n
while q >= 2 or q < 0:
q, r = divmod(q, -2)
if r < 0:
q += 1
r += 2
s += str(r)
return int(str(q)+s[::-1], 2) # Chai Wah Wu, Apr 10 2016
(PARI) a(n) = my(t=(32*4^logint(abs(n)+1, 4)-2)/3); bitxor(n+t, t); \\ Ruud H.G. van Tol, Oct 18 2023
CROSSREFS
Cf. A039724. Complement of A005352.
Cf. A185269 (primes in this sequence).
Sequence in context: A019932 A004447 A258989 * A098882 A254374 A019616
KEYWORD
nonn,base,easy,nice,look
EXTENSIONS
More terms from Robert G. Wilson v, Jan 24 2005
STATUS
approved