OFFSET
0,3
COMMENTS
a(n) = n when n is a power of 4. This is because the even-indexed powers of 2 are the same as the even-indexed powers of -2. - Alonso del Arte, Feb 09 2012
a(n) = n if n is a sum of distinct powers of 4. - Michael Somos, Aug 27 2012
Write n = Sum_{i in b(n)} (-2)^(i - 1), which uniquely determines the set of positive integers b(n). Then a(n) = Sum_{i in b(n)} 2^(i - 1). For example, a(7) = 27 because 7 = (-2)^0 + (-2)^1 + (-2)^3 + (-2)^4 and 27 = 2^0 + 2^1 + 2^3 + 2^4. - Gus Wiseman, Jul 26 2019
REFERENCES
M. Gardner, Knotted Doughnuts and Other Mathematical Entertainments. Freeman, NY, 1986, p. 101.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..8191
Joerg Arndt, Matters Computational (The Fxtbook), p. 58-59
Eric Weisstein's World of Mathematics, Negabinary
Wikipedia, Negative base
A. Wilks, Email, May 22 1991
FORMULA
a(4n+2) = 4a(n+1)+2, a(4n+3) = 4a(n+1)+3, a(4n+4) = 4a(n+1), a(4n+5) = 4a(n+1)+1, n>-2, a(1)=1. - Ralf Stephan, Apr 06 2004
EXAMPLE
2 = 4+(-2)+0 = 110 => 6, 3 = 4+(-2)+1 = 111 => 7, ..., 6 = (16)+(-8)+0+(-2)+0 = 11010 => 26.
MATHEMATICA
f[n_] := Module[{t = 2(4^Floor[ Log[4, Abs[n] + 1] + 2] - 1)/3}, BitXor[n + t, t]]; Table[ f[n]], {n, 0, 60}] (* Robert G. Wilson v, Jan 24 2005 *)
PROG
(Haskell)
a005351 0 = 0
a005351 n = a005351 n' * 2 + m where
(n', m) = if r < 0 then (q + 1, r + 2) else (q, r)
where (q, r) = quotRem n (negate 2)
-- Reinhard Zumkeller, Jul 07 2012
(Python)
def A005351(n):
s, q = '', n
while q >= 2 or q < 0:
q, r = divmod(q, -2)
if r < 0:
q += 1
r += 2
s += str(r)
return int(str(q)+s[::-1], 2) # Chai Wah Wu, Apr 10 2016
(PARI) a(n) = my(t=(32*4^logint(abs(n)+1, 4)-2)/3); bitxor(n+t, t); \\ Ruud H.G. van Tol, Oct 18 2023
CROSSREFS
KEYWORD
AUTHOR
EXTENSIONS
More terms from Robert G. Wilson v, Jan 24 2005
STATUS
approved